Reliability & Lifetime calculations using Power Tester & FloTHERM Voon Hon Wong, PhD. Field Product Manager May 2019 Restricted © Siemens AG 2019 Realize innovation. # Importance of Thermals ### The Importance of Thermal design in electronics #### **SIEMENS** Ingenuity for life In any semiconductor IC package, we are concerned with the Junction Temperature Temperature effects are linked to: #### **Functional performance** - Timing errors in digital ICs - Performance of analog circuits - LED colour and brightness #### Reliability - Solder joint cracking - PCB trace delamination - PCB FR4 melt - Fusing - Broken bond wires #### **How Thermal Simulations can help?** SIEMENS Ingenuity for life Minimise the risk of 1st physical prototype failure By observing performance of simulated 'virtual prototypes' throughout the design process Can also be used to help predict life time and reliability of products Page 4 2019.05.22 Siemens PLM Software #### Power Electronics - IGBT technology trend: Power densities are increasing Ingenuity for life Unrestricted © Siemens AG 20าษ Page 5 2019.05.22 Siemens PLM Software # Insulated Gate Bipolar Transistors (IGBT) / Power Electronics Applications # SIEMENS Ingenuity for life #### Motor drives - Commercial motor drives - Motor drives discrete - Motor drives modules - Motor drives IPM #### **UPS** - UPS discrete - UPS modules #### PhotoVoltaic inverters - Commercial PV - Residential PV - Solar farms #### Electric Vehicles/Hybrids - PHEV/EV - Full HEV - Mild HEV - Micro HEV - EV/HEV charging stations #### Railway traction - Rail traction inverters - Rail auxiliary inverters #### Wind turbines - Wind turbine >1MW - Residential/commercial wind turbines #### Industrial applications - Welding - Other industrial #### Consumer applications - Induction heating - DSC–DSLR camera flash - Air conditioner - Washing machine - Microwave oven - Flat panel (LCD/PDP) - Lighting supplies - Other home appliances Classification by Yole Développement #### Others - Other power supplies (SMPS) - Automotive ignition - Marine propulsion - Medical applications - Defibrillators - Avionics converters - Heavy duty vehicles - Grid –T&D Page 6 2019.05.22 Siemens PLM Software #### **IGBT Market Forecast by Segment** Source: Yole Developpement - IGBT Markets & Application Trends, 2013 Page 7 2019.05.22 Siemens PLM Software # **Test Methodologies** #### **Commonly used test methods** IGBT testing includes some major branches, like - Module electrical characterization tests (QM and QC) - Environmental tests (QE) - Lifetime tests (QL) - etc. (mechanical tolerances, chemical resistance, ...) Siemens expertise covers an important range of these testing branches, especially those which are related to powering solutions and thermal effects #### **Environmental testing (QE) for automotive industry** Siemens PLM Software The environmental tests serve to verify the suitability of power electronics modules for use in motor vehicles. Some commonly used environmental test solutions - Temperature shock tests (TST) - Contactability (CO) - Vibration (V) - Mechanical shock (MS) We focus only on those which induce mechanical damage in the heat conduction path of the power module - Combined with structure function evaluation it is a good test method - Power Cycling Tests Page 10 2019.05.22 The thermo-mechanical stress is the largest when the temperature difference between layers is high and the contact surface is large Page 11 2019.05.22 Siemens PLM Software The thermo-mechanical stress is the largest when the temperature difference between layers is high and the contact surface is large Solder joint between the base plate and the back-side metallization of the substrate Unrestricted © Siemens AG 2019 The thermo-mechanical stress is the largest when the temperature difference between layers is high and the contact surface is large Die attach – There was extensive research in this field towards better materials and processes Page 13 2019.05.22 Siemens PLM Software The thermo-mechanical stress is the largest when the temperature difference between layers is high and the contact surface is large Bond wires - Small area but high temperature swing and CTE mismatch make it vulnerable Unrestricted © Siemens AG 2019 #### The ageing process (cycling) has to be simulation based Temperature gradient development during power cycling Page 15 2019.05.22 Siemens PLM Software # Mission Profile Based Lifetime Testing #### **Power Cycling Tests – Our Solution: Power Tester** Uses T3Ster technology Structure Functions High Power applications 600A, 1500A, 1800A, 2400A, 3600A Automated Power Testing and Power Cycling tests For MOSFETs, IGBTs & generic two-pole devices # **Example: Electric traction in a car** #### **SIEMENS** Ingenuity for life Heating and cooling is determined by the motion of the wheel **Unrestricted © Siemens AG 2019** Page 18 Siemens PLM Software 2019.05.22 # Definition of the application – The driving profile For the design of the power module the exact definition of the task is necessary Possible input data: Electrical data: V, I Velocity vs. time functions Driving profile examples Test standards defined by the US EPA FTP-75 for the general city driving UDDS: Inside the city for light vehicles US06: Aggressive driver HWFET: Highway, standard driver Page 19 2019.05.22 Siemens PLM Software ### 1. Lifetime calculation workflow #### **SIEMENS** Ingenuity for life #### 3. Temperature Profile Page 20 2019.05.22 Siemens PLM Software # 2. Power profile based on mission profile #### SIEMENS Ingenuity for life Forces used for modeling the movement of a car - Rolling resistance: $F_g = \mu_g mg$ - Air resistance: $F_{air} = \frac{1}{2} \rho A C_d v^2$ - Acceleration resistance: $F_{acc} = ma$ - Elevating resistance: $F_{elev} = mgsin(\varphi)$ (neglected) Engine power: $P_{engine}(t) = \Sigma F v(t)$ Total required power: $$P_{total}(t) = \frac{P_m(t)}{\eta}$$ $(\eta - efficiency)$ Power loss: $$P_v(t) = P_{total}(t) - P_{engine}(t)$$ • $P_v(t)$ is partially the conduction and switching loss of the IGBT 2019.05.22 # 3. Temperature profile simulation Step 1. 3D model FloTHERM/FloTHERM XT detailed model of a single IGBT module. - Same environmental conditions as PwT tests. - Same power dissipations of the dies. Step 2 Use Auto-Calibration to calibrate the simulation model. Gives us: - Accurate transient behavior - Confidence with simulation model Step 3 With a calibrated IGBT module in FT, we can now create a system level of the inverter (> 1 IGBTs + coldplate) Simulate with driving cycle We obtain the resulting temperature vs. time profile for the die(s) # 4. Temperature histogram calculation Count the individual temperature gradient components in the temperature profile – future weighting factor in cycling # 5. Power cycling # SIEMENS Ingenuity for life #### ► Reliability/ lifetime test Switching the power between two defined states - Induces mechanical stress - Leading to failure Monitoring the phenomenon with optical/thermal tests Checking the maximum temperature change of the sample in each cycle # 6. Measure points of the lifetime curves and estimate lifetime SIEMENS Ingenuity for life Arrhenius model: $N_f = e^{\left(\frac{E_a}{k_b \cdot T}\right)}$ Extended Arrhenius models: • $$N_f(\Delta T) = A \cdot (\Delta T_j)^{\alpha} \cdot e^{\left(\frac{E_a}{k_b \cdot T}\right)}$$ • $$N_f(\Delta T) = A \cdot f^{\beta} \cdot (\Delta T_j)^{\alpha} \cdot e^{\left(\frac{E_a}{k_b \cdot T}\right)}$$ #### Cycles to failure (used by: F* Company) (used by: I* Company) #### Lifetime estimation 2019.05.22 $$N_{f_sum} = \frac{1}{\sum_{k=1}^{n} \frac{w_i}{N_{f_i}}}$$ $$t_{operation} = N_{f_sum} \cdot t_{cycle}$$ # **Case Study** # **IGBT Sample** We opened up and measured the sample's geometry Unrestricted © Siemens AG 2019 ### **IGBT** Detailed simulation model #### **SIEMENS** Ingenuity for life Material Properties assigned to the different layers in FloTHERM Page 28 2019.05.22 Siemens PLM Software ### **Model calibration** Adjustment of material properties until a perfect match is achieved between structure functions | | Original | | | Modified | | | |-------------|--------------------|--------------------------|-----------------------------|--------------------|-----------------------|-----------------------------| | Layers | Density
[kg/m³] | Specific heat
[J/kgK] | Thermal conductivity [W/mK] | Density
[kg/m³] | Specific heat [J/kgK] | Thermal conductivity [W/mK] | | Chip | 2330 | 700 | 117,5 | 2330 | 700 | 100 | | DA | 14520 | 151 | 59 | 14000 | 1000 | 67 | | Copper | 8930 | 385 | 385 | 8930 | 385 | 385 | | Ceramics | 3300 | 725 | 170 | 3300 | 725 | 170 | | Solder | 1 | 1 | 57 | 1 | 1 | 57 | | Copper base | 8930 | 385 | 385 | 8930 | 385 | 385 | #### **SIEMENS** Ingenuity for life Siemens PLM Software # Simulation of the IGBT's temperature profile #### **SIEMENS** Ingenuity for life Siemens PLM Software # **ΔT Histogram** Rainflow Algorithm to determine the distribution of ΔT from temperature results Unrestricted © Siemens AG 2019 Page 31 2019.05.22 Siemens PLM Software ### **Accelerated lifetime tests** ### **SIEMENS** Ingenuity for life Samples were tested at 3 different environmental temperatures: 110°C, 100°C, 90°C. ### Lifetime curve # Curve fitting following the Coffin-Manson model $N_f = A \cdot \left(\Delta T_j\right)^{\alpha}$ #### **SIEMENS** Ingenuity for life | A | α | | | |-------------------------|----------|--|--| | 3,69448·10 ⁸ | -1,89743 | | | Siemens PLM Software ### Lifetime prediction $$\begin{split} N_{f_sum} = & \frac{1}{\sum_{k=1}^{n} \frac{W_i}{N_{f_i}}} \\ t_{operation} = & N_{f_sum} \cdot t_{cycles} \end{split}$$ | N_{f_sum} | $t_{ciklus}[s]$ | t _{operation} [h] | |--------------|-----------------|----------------------------| | 55382 | 240 | 3692 | # **Questions?** Thank you. Voon Hon Wong, PhD hon.wong@siemens.com