

Reliability & Lifetime calculations using Power Tester & FloTHERM

Voon Hon Wong, PhD. Field Product Manager May 2019

Restricted © Siemens AG 2019

Realize innovation.

Importance of Thermals

The Importance of Thermal design in electronics

SIEMENS

Ingenuity for life

In any semiconductor IC package, we are concerned with the Junction Temperature Temperature effects are linked to:

Functional performance

- Timing errors in digital ICs
- Performance of analog circuits
- LED colour and brightness

Reliability

- Solder joint cracking
- PCB trace delamination
- PCB FR4 melt
- Fusing
- Broken bond wires

How Thermal Simulations can help?

SIEMENS
Ingenuity for life

Minimise the risk of 1st physical prototype failure

By observing performance of simulated 'virtual prototypes' throughout the design process

Can also be used to help predict life time and reliability of products

Page 4 2019.05.22 Siemens PLM Software

Power Electronics - IGBT technology trend: Power densities are increasing

Ingenuity for life

Unrestricted © Siemens AG 20าษ

Page 5 2019.05.22 Siemens PLM Software

Insulated Gate Bipolar Transistors (IGBT) / Power Electronics Applications

SIEMENS Ingenuity for life

Motor drives

- Commercial motor drives
- Motor drives discrete
- Motor drives modules
- Motor drives IPM

UPS

- UPS discrete
- UPS modules

PhotoVoltaic inverters

- Commercial PV
- Residential PV
- Solar farms

Electric Vehicles/Hybrids

- PHEV/EV
- Full HEV
- Mild HEV
- Micro HEV
- EV/HEV charging stations

Railway traction

- Rail traction inverters
- Rail auxiliary inverters

Wind turbines

- Wind turbine >1MW
- Residential/commercial wind turbines

Industrial applications

- Welding
- Other industrial

Consumer applications

- Induction heating
- DSC–DSLR camera flash
- Air conditioner
- Washing machine
- Microwave oven
- Flat panel (LCD/PDP)
- Lighting supplies
- Other home appliances

Classification by Yole Développement

Others

- Other power supplies (SMPS)
- Automotive ignition
- Marine propulsion
- Medical applications
- Defibrillators
- Avionics converters
- Heavy duty vehicles
- Grid –T&D

Page 6 2019.05.22 Siemens PLM Software

IGBT Market Forecast by Segment

Source: Yole Developpement - IGBT Markets & Application Trends, 2013

Page 7 2019.05.22 Siemens PLM Software

Test Methodologies

Commonly used test methods

IGBT testing includes some major branches, like

- Module electrical characterization tests (QM and QC)
- Environmental tests (QE)
- Lifetime tests (QL)
- etc. (mechanical tolerances, chemical resistance, ...)

Siemens expertise covers an important range of these testing branches,

especially those which are related to powering solutions and thermal effects

Environmental testing (QE) for automotive industry

Siemens PLM Software

The environmental tests serve to verify the suitability of power electronics modules for use in motor vehicles.

Some commonly used environmental test solutions

- Temperature shock tests (TST)
- Contactability (CO)
- Vibration (V)
- Mechanical shock (MS)

We focus only on those which induce mechanical damage in the heat conduction path of the power module

- Combined with structure function evaluation it is a good test method
- Power Cycling Tests

Page 10 2019.05.22

The thermo-mechanical stress is the largest when the temperature difference between layers is high and the contact surface is large

Page 11 2019.05.22 Siemens PLM Software

The thermo-mechanical stress is the largest when the temperature difference between layers is high and the contact surface is large Solder joint between the base plate and the back-side metallization of the substrate

Unrestricted © Siemens AG 2019

The thermo-mechanical stress is the largest when the temperature difference between layers is high and the contact surface is large

Die attach – There was extensive research in this field towards better materials and processes

Page 13 2019.05.22 Siemens PLM Software

The thermo-mechanical stress is the largest when the temperature difference between layers is high and the contact surface is large

Bond wires - Small area but high temperature swing and CTE mismatch make it vulnerable

Unrestricted © Siemens AG 2019

The ageing process (cycling) has to be simulation based

Temperature gradient development during power cycling

Page 15 2019.05.22 Siemens PLM Software

Mission Profile Based Lifetime Testing

Power Cycling Tests – Our Solution: Power Tester

Uses T3Ster technology

Structure Functions

High Power applications

600A, 1500A, 1800A, 2400A, 3600A

Automated Power Testing and Power Cycling tests

For MOSFETs, IGBTs & generic two-pole devices

Example: Electric traction in a car

SIEMENS

Ingenuity for life

Heating and cooling is determined by the motion of the wheel

Unrestricted © Siemens AG 2019

Page 18 Siemens PLM Software 2019.05.22

Definition of the application – The driving profile

For the design of the power module the exact definition of the task is necessary

Possible input data:

Electrical data: V, I

Velocity vs. time functions

Driving profile examples

Test standards defined by the US EPA

FTP-75 for the general city driving

UDDS: Inside the city for light vehicles

US06: Aggressive driver

HWFET: Highway, standard driver

Page 19 2019.05.22 Siemens PLM Software

1. Lifetime calculation workflow

SIEMENS

Ingenuity for life

3. Temperature Profile

Page 20

2019.05.22

Siemens PLM Software

2. Power profile based on mission profile

SIEMENS

Ingenuity for life

Forces used for modeling the movement of a car

- Rolling resistance: $F_g = \mu_g mg$
- Air resistance: $F_{air} = \frac{1}{2} \rho A C_d v^2$
- Acceleration resistance: $F_{acc} = ma$
- Elevating resistance: $F_{elev} = mgsin(\varphi)$ (neglected)

Engine power: $P_{engine}(t) = \Sigma F v(t)$

Total required power:
$$P_{total}(t) = \frac{P_m(t)}{\eta}$$
 $(\eta - efficiency)$

Power loss:
$$P_v(t) = P_{total}(t) - P_{engine}(t)$$

• $P_v(t)$ is partially the conduction and switching loss of the IGBT

2019.05.22

3. Temperature profile simulation

Step 1.

3D model

FloTHERM/FloTHERM XT detailed model of a single IGBT module.

- Same environmental conditions as PwT tests.
- Same power dissipations of the dies.

Step 2

Use Auto-Calibration to calibrate the simulation model. Gives us:

- Accurate transient behavior
- Confidence with simulation model

Step 3

With a calibrated IGBT module in FT, we can now create a system level of the inverter (> 1 IGBTs + coldplate)

Simulate with driving cycle
We obtain the resulting
temperature vs. time profile for the
die(s)

4. Temperature histogram calculation

Count the individual temperature gradient components in the temperature profile – future weighting factor in cycling

5. Power cycling

SIEMENS Ingenuity for life

► Reliability/ lifetime test

Switching the power between two defined states

- Induces mechanical stress
- Leading to failure

Monitoring the phenomenon with optical/thermal tests

Checking the maximum temperature change of the sample in each cycle

6. Measure points of the lifetime curves and estimate lifetime

SIEMENS
Ingenuity for life

Arrhenius model: $N_f = e^{\left(\frac{E_a}{k_b \cdot T}\right)}$

Extended Arrhenius models:

•
$$N_f(\Delta T) = A \cdot (\Delta T_j)^{\alpha} \cdot e^{\left(\frac{E_a}{k_b \cdot T}\right)}$$

•
$$N_f(\Delta T) = A \cdot f^{\beta} \cdot (\Delta T_j)^{\alpha} \cdot e^{\left(\frac{E_a}{k_b \cdot T}\right)}$$

Cycles to failure

(used by: F* Company)

(used by: I* Company)

Lifetime estimation

2019.05.22

$$N_{f_sum} = \frac{1}{\sum_{k=1}^{n} \frac{w_i}{N_{f_i}}}$$

$$t_{operation} = N_{f_sum} \cdot t_{cycle}$$

Case Study

IGBT Sample

We opened up and measured the sample's geometry

Unrestricted © Siemens AG 2019

IGBT Detailed simulation model

SIEMENS

Ingenuity for life

Material Properties assigned to the different layers in FloTHERM

Page 28 2019.05.22 Siemens PLM Software

Model calibration

 Adjustment of material properties until a perfect match is achieved between structure functions

	Original			Modified		
Layers	Density [kg/m³]	Specific heat [J/kgK]	Thermal conductivity [W/mK]	Density [kg/m³]	Specific heat [J/kgK]	Thermal conductivity [W/mK]
Chip	2330	700	117,5	2330	700	100
DA	14520	151	59	14000	1000	67
Copper	8930	385	385	8930	385	385
Ceramics	3300	725	170	3300	725	170
Solder	1	1	57	1	1	57
Copper base	8930	385	385	8930	385	385

SIEMENS

Ingenuity for life

Siemens PLM Software

Simulation of the IGBT's temperature profile

SIEMENS

Ingenuity for life

Siemens PLM Software

ΔT Histogram

Rainflow Algorithm to determine the distribution of ΔT from temperature results

Unrestricted © Siemens AG 2019

Page 31

2019.05.22

Siemens PLM Software

Accelerated lifetime tests

SIEMENS

Ingenuity for life

Samples were tested at 3 different environmental temperatures: 110°C, 100°C, 90°C.

Lifetime curve

Curve fitting following the Coffin-Manson model $N_f = A \cdot \left(\Delta T_j\right)^{\alpha}$

SIEMENS

Ingenuity for life

A	α		
3,69448·10 ⁸	-1,89743		

Siemens PLM Software

Lifetime prediction

$$\begin{split} N_{f_sum} = & \frac{1}{\sum_{k=1}^{n} \frac{W_i}{N_{f_i}}} \\ t_{operation} = & N_{f_sum} \cdot t_{cycles} \end{split}$$

N_{f_sum}	$t_{ciklus}[s]$	t _{operation} [h]
55382	240	3692

Questions?

Thank you.

Voon Hon Wong, PhD hon.wong@siemens.com