

# Silicon Carbide Thermal Transient Measurement and Reliability testing

Where today meets tomorrow.



Unrestricted | © Siemens 2021 | Siemens Digital Industries Software | Where today meets tomorrow.

## Simcenter T3Ster Technology



Unrestricted | © Siemens 2021 | Siemens Digital Industries Software | Where today meets tomorrow.

### **Key Simcenter T3STER Strengths**



## **Simcenter Testing Portfolio**

![](_page_3_Picture_1.jpeg)

Unrestricted | © Siemens 2021 | Siemens Digital Industries Software | Where today meets tomorrow.

#### **MicReD Products list and Major Milestones**

**Production** R&D

![](_page_4_Picture_2.jpeg)

Page 5 Unrestricted | © Siemens 2021 | Siemens Digital Industries Software | Where today meets tomorrow.

## Thermal Transient Tester – Simcenter T3STER SI

Powering unit:

- 20W combined output power
- User programmable:
  - 2A/10V, 1A/20V, 0.5A/40V
- Up to 10 channels can be installed
- Configurable as voltage source
  - Floating gate driver

Sincerter TSSTER

Transient voltage measurement channels:

- Include floating sense current sources
- 18bit, 0.002°C, 1MSample/s
- · Up to 40 channels can be installed

\*Front panel appearance and features dependent on chosen configuration.

![](_page_5_Picture_15.jpeg)

![](_page_6_Figure_0.jpeg)

#### **SIEMENS**

#### **Improved usability - Software**

## Introduction to WBG Semiconductors

![](_page_7_Picture_1.jpeg)

Unrestricted | © Siemens 2021 | Siemens Digital Industries Software | Where today meets tomorrow.

#### **WBG Semiconductors**

![](_page_8_Figure_1.jpeg)

![](_page_8_Figure_2.jpeg)

1 Comparison Between Competing Requirements of GaN and SiC Family of Power Switching Devices", Yuanhang Zhang et. al, 2020, doi:10.1088/1757-899X/738/1/012004

2 The Difference Between GaN and SiC Transistors, ON Semiconductors, 03, 2020, https://www.onsemi.cn/pub/Collateral/TND6299-D.PDF

3 Group III nitride and SiC based MEMS and NEMS: Materials properties, technology and applications, V. Cimalla et. al., October 2007, Journal of Physics D Applied Physics 40(20):6386-6434, doi: 10.1088/0022-3727/40/20/S19

![](_page_8_Picture_7.jpeg)

### SiC MOSFET Advantages

Silicon Carbide (SiC) based devices offer advantageous electrical and thermal properties for power electronics especially automotive electrification e.g EV/HEV power electronics modules

- wide band-gap, high breakdown voltage, and high thermal conductivity
- higher efficiency, lower dissipation, smaller overall system size, and the opportunity for higher temperature operation

![](_page_9_Figure_4.jpeg)

#### SIEMENS

### **GaN Advantages and Challenges**

In contrast to SiC, Gallium Nitride (GaN) shows advantages in most, but not all properties revelant for power electronics in the automotive industry:

- wide band-gap, high breakdown voltage, high mechanical stability and excellently low R<sub>ds,on</sub> but
- higher thermal resistance and normally-on behavior

![](_page_10_Figure_4.jpeg)

![](_page_10_Picture_6.jpeg)

## WBG Semiconductor Thermal Characterization Methods

![](_page_11_Picture_1.jpeg)

Unrestricted | © Siemens 2021 | Siemens Digital Industries Software | Where today meets tomorrow.

## **Traditional Thermal Transient Measurement Modes for Si**

#### MOS diode (Threshold mode) – current step method

- · Gate connected to the Drain
- The threshold voltage can be higher than 5V

### Fixed VDS mode

- Gate voltage is regulated → R<sub>ds,on</sub> is kept constant
- The TSP is the  $V_{\rm GS}$  Voltage as it changes in order to keep the  $V_{\rm DS}$  constant
- The circuit is less sensitive to the oscillation, but the appropriate compensation still needs to be selected

### **IGBT** saturation mode

- · Heating and sensing current are flowing through the channel
- Constant  $V_{\text{GE}}$  during heating and sensing
- $V_{CE}$  is sensed

![](_page_12_Figure_12.jpeg)

![](_page_12_Picture_13.jpeg)

### Testing conventional Si measurement methods on SiC MOSFETs

SiC MOSFET measured with 20A sensor current, 240 A heating current and 15V V<sub>GS</sub>

![](_page_13_Figure_2.jpeg)

![](_page_13_Picture_4.jpeg)

#### **Examples of Electrical Parasitic Response**

SiC MOSFET measured with 20A sensor current, 50A heating current and 10V VGS

![](_page_14_Figure_2.jpeg)

![](_page_14_Picture_4.jpeg)

#### **Advanced Thermal Transient Measurement Modes for SiC**

#### MOSFET sat. mode

Page 17

- Heating via MOSFET channel and positive gate voltage
- Measurement via Body Diode with open channel and negative gate voltage

#### For parallelly connected SiC chips i.e. in half-bridge modules:

 Leakage on gate too high due to bad oxide isolation → channel does not fully close or oscillation

Heating and sensing via Body Diode possible with gate-source short

or negative gate → channel disabled

![](_page_15_Picture_8.jpeg)

![](_page_15_Figure_9.jpeg)

![](_page_15_Figure_10.jpeg)

![](_page_15_Picture_11.jpeg)

### SIEMENS

#### Why do standard Si measurement methods not work?

- The SiO<sub>2</sub> SiC transition, may contain trapped charge carriers due to the large concentration of crystalline errors at the interface
- Some techniques, such as post-oxidation annealing of the gate oxide in nitric or nitrous oxide (NO or N<sub>2</sub>O) may improve the device performance
- In some structures the movement of these trapped charges cause electrical disturbances up to the several seconds range after the switching
- Thermal transient tests should be carried out in connection modes, where the gate potential remains unchanged during the process.
- This makes common test procedures, such as the "MOS diode" setup and the fixed VDS arrangement unsuitable for testing SiC devices.

![](_page_16_Picture_7.jpeg)

#### **Example: MOSFET saturation mode**

As the issues demonstrated before most likely correspond to a gate charge related phenomena, the SiC diodes are not affected

![](_page_17_Figure_2.jpeg)

![](_page_17_Picture_4.jpeg)

### GaN Device Challenges

- As for SiC devices the Rds,on for GaN is very low resulting in a very low voltage drop at regular sensing currents (≤1A)
- The "standard" GaN device has not been established yet → manufacturers introduce different approaches
  - Enhancement type GaN HEMTs
  - Si MOSFET cascode GaN HEMTS
  - Standard-on HEMTs for high frequency applications
- Atomic scale effects at the gate result in similar "strange" behavior which is known from SiC devices
  - Charge carrier capture and emission on traps create virtual gate up the minute range

![](_page_18_Picture_9.jpeg)

#### Si-MOSFET Cascode GaN Normal-Off Device

- HEMT needs negative gate voltage for off state
- Forward drop on MOSFET is negative HEMT gate → switchoff MOSFET results in negative HEMT gate → HEMT switches off as well
- No access to MOSFET drain terminal → structure not separable!
- Assume IGBT sat. mode (heating and sensing in forward direction):
- R<sub>ds,on</sub> MOSFET: ~1mOhm
- R<sub>ds,on</sub> HEMT: ~10mOhm

**Pros**: HEMT voltage drop is dominant, heating power is distributed 10/1 on the HEMT **Cons**: Signal amplitude is very low (high sensing currents needed (>>1A)

![](_page_19_Figure_8.jpeg)

Depletion type HEMT

#### Silicon MOSFET

![](_page_19_Picture_12.jpeg)

#### Si-MOSFET Cascode GaN Normal-Off Device

GaN HEMTs commonly show a very similar behavior in forward and reverse direction

## Assume MOSFET diode mode (heating and sensing in reverse):

- Si Body diode: ~600mV @ 100mA
- R<sub>ds,on</sub> HEMT: ~10mOhm

![](_page_20_Figure_5.jpeg)

Depletion type HEMT

#### Silicon MOSFET

Pros: Signal amplitude is perfect and low sensing currents are sufficient
Cons: Sensing on MOSFET diode → Only feasible if MOSFET is not seperated from GaN structure

![](_page_20_Picture_10.jpeg)

#### Use Case: GaN HEMT Cree CGH40025F Thermal Characterization

- The goal of the study was to examine the possibility of doing thermal transient tests on a high frequency HEMT transistor using elevated Drain to Source voltage for heating.
- The tests were carried out on CREE CGH40025F HEMT transistor purchased by Mentor A Siemens Business

Proposed thermal characterization method is not generally applicable on GaN devices

#### Difficulties:

- In order to elevate the drain-source voltage the gate potential needs to be pulled close to the threshold voltage of -3V
- In this operating point the RF component tends to oscillate at very high frequencies that is hard to control

![](_page_21_Picture_7.jpeg)

Measurements by: Zoltan Sarkany, Product Manager

![](_page_21_Picture_9.jpeg)

#### **GaN Threshold Mode Measurement – Schottky Diode Gate**

- V<sub>CB</sub> to switch HEMT channel from on (closed channel close to threshold) to off state (open channel)
- D<sub>1</sub> to isolate V<sub>CB</sub> and I<sub>sense</sub> during sensing

#### Temperature sensing:

- Sensing via schottky gate diode with constant current (I<sub>sense</sub>)
- V<sub>CB</sub> is positive so D<sub>1</sub> isolates gate → GaN HEMT is off

#### Heating

- Heating current (I<sub>heat</sub>) from drain to source
- During heating the transistor is in on state (closed channel, near threshold voltage) with negative voltage on gate
- R1 stabilizes operation point
- C1 and the ferrite bead eliminate oscillation

![](_page_22_Figure_11.jpeg)

![](_page_22_Picture_13.jpeg)

#### **Thermal Calibration**

DUT environment temperature was controlled by regulating the cold plate temperature with a fluid thermostat (chiller)

- Temperature sensitivity calibration was carried out between 10 and 90 °C in 10°C steps
- The measured TSP = 5.066 mV/K

![](_page_23_Figure_4.jpeg)

![](_page_23_Picture_6.jpeg)

#### **Results – Raw Transients**

Page 27

![](_page_24_Figure_1.jpeg)

Unrestricted | © Siemens 2021 | Siemens Digital Industries Software | Where today meets tomorrow.

#### **SIEMENS**

10

Time [s]

### **Results** – **Z**<sub>th</sub>

![](_page_25_Figure_1.jpeg)

Two curves fit well until about 1.5 seconds, until the heat reaches the component cooling surface

![](_page_25_Picture_5.jpeg)

#### **Results – Structure Functions**

- Structure functions fit fairly well at the package level, splitting up around 6.5 K
- R<sub>th,J-C</sub> can be determined

![](_page_26_Figure_3.jpeg)

SIEMENS

#### Conclusion

٠

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

Simcenter T3STER and all new T3STER SI

Simcenter Powertester

For GaN characterization a general statement is not possible yet ٠

If you are interested in GaN thermal characterization or powercycling with Simcenter T3STER or **Powertester please contact our application engineers** 

![](_page_27_Picture_8.jpeg)

![](_page_28_Picture_0.jpeg)