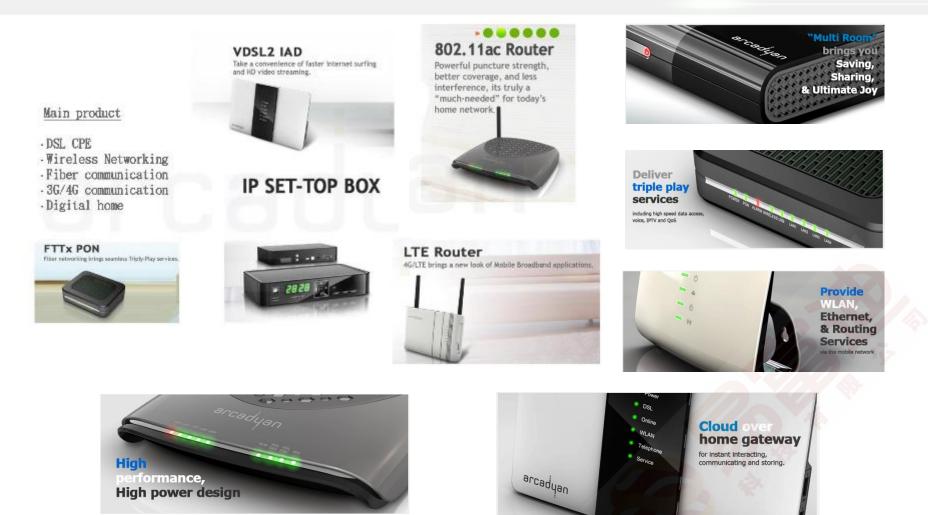


Using FloEFD : Case Studies on Networking Devices for Thermal Design

Arcadyan Technology Corporation.2013. All rights are reserved. The information contained herein is the exclusive property of Arcadyan and shall not be used, distributed, reproduced, or disclosed in whole or in part without prior written permission of Arcadyan. It thereof does not convey or imply any licenses under patent rights or other industrial or intellectual property rights. Arcadyan Confidential Information


2016.11.11

ARCADYAN TECHNOLOGY CORPORATION 2011 Copyright.

- 1. Introduction of networking devices
- 2. The environment variables of EFD
- 3. The process of thermal design
- 4. Simulation results

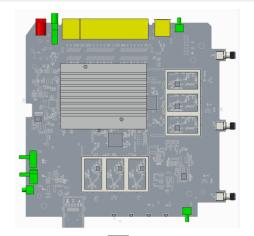
Introduction of networking devices

arcadyan

3

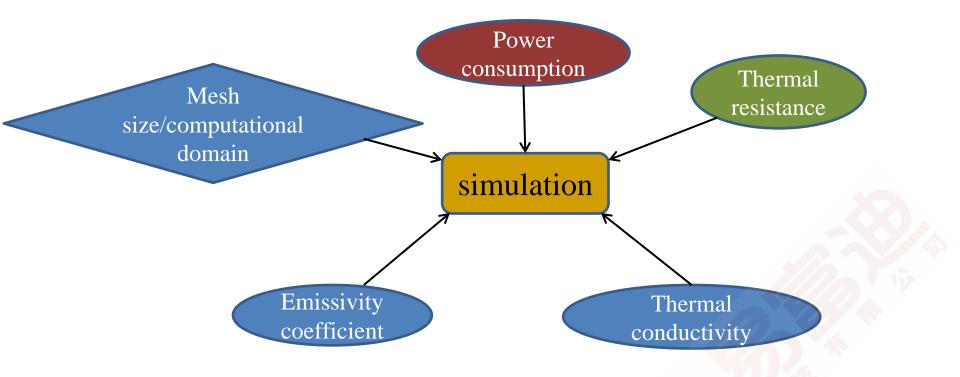
· · · · · · · · ·		e			
📕 🗋 🔗 🔛 いてなて 🏥 🃅 🖬 🕇	Ŧ	WG9117E/	AC33_2-J6(活動的) - Creo F	Parametric 2.0	
Wizard New Clone Project Settings → New Clone Project Settings → New → New	Initial Local Mesh Initial Mesh		▼ Capture ▼ Results ▼	B Check Geometry Engineering Database Create Lids Tools ▼	FloEFD FloEFD Help Topics Support +
Re 確 Image: Text of the second sec	m • 📰 •			0, 4, 6 🔆 🔽	} ∙
General Settings	Navigator Image: Analysis type Image: Analysis type	proce	ow the defa ess to settin nvironmer	ng	

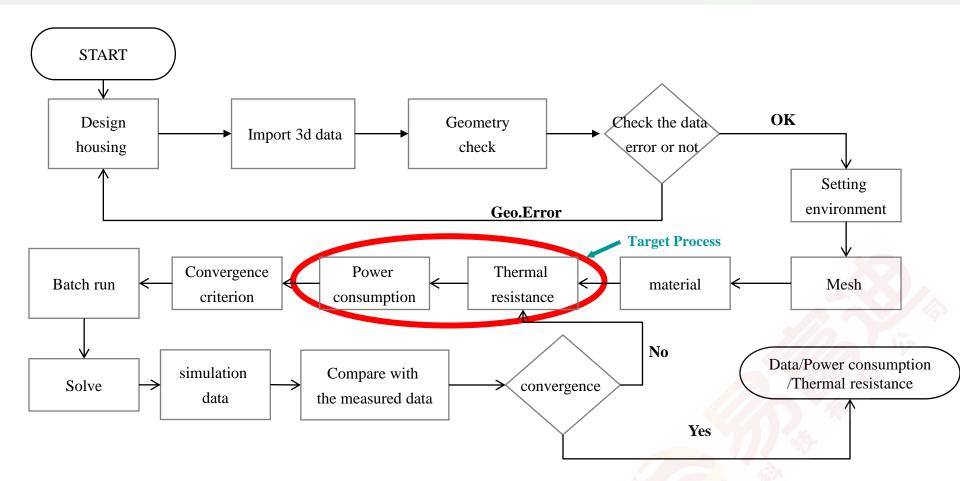
Using the Pro/e to design the 3D model to simulate.



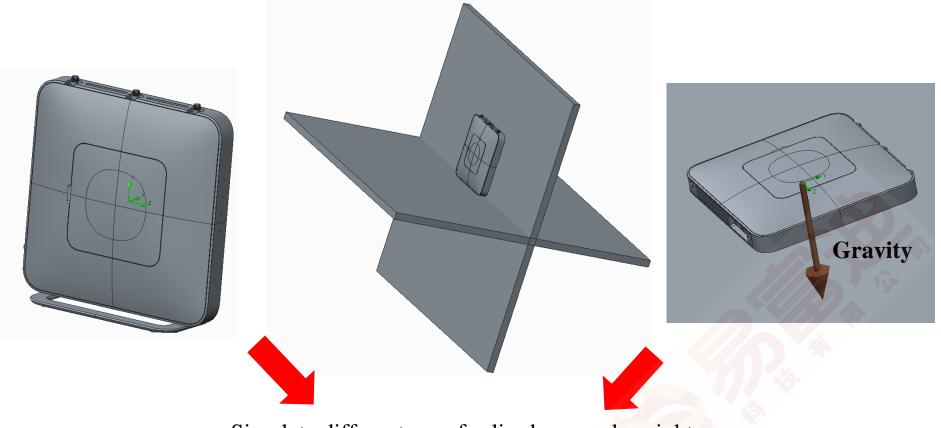
Engineering Database		23 S		
File Edit View Units Help				
• • • • • • • • • • • •	Ì\${ \${ \${ \$} \$} \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	◈ 🖪 🔛 🗰 🔷		
Database tree:	Items Item Properties Tables and Curves			
🗄 🖟 🔂 Contact Thermal Resist 🔺	Property	Value		
🗄 🧟 Custom - Visualization F	Name	Aluminum		
🗄 🍣 Fans 👘 👘	Comments			
🗄 🛗 Heat Sinks	Density	2688.9 kg/m^3		
📄 🏃 Materials	Specific heat	(Table)		
🖅 👌 Compressible Liquic	Conductivity type	Isotropic		
🗄 🛶 Gases	Thermal conductivity	(Table)		
🖽 👌 Liquids	Electrical conductivity	Conductor		
🗄 👌 Non-Newtonian Liq	Resistivity	(Table)		
🖶 📣 Real Gases	Radiation properties			
🖃 🧐 Solids	Melting temperature			
🖃 籠 Pre-Defined	Temperature	933.4 K		
Alloys Alloys Ceramics Glasses an IC Package Laminates Metals Polymers Polymers Semicondu User Defined Steam Steam	Material and thermal properties			
	Aluminum	SI (m-kg-s)		

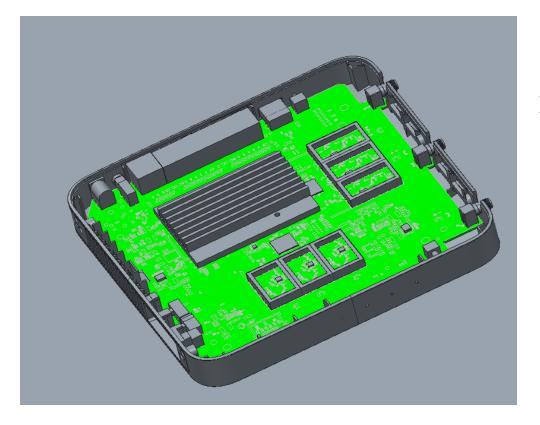
🔓 Engineering Database								? X
File Edit View Units Help								
	! ≰ ∻ ∰ .	k 💷 💊 🔛 D	<u> </u> ~ [X 🗗		
Database tree:	Items Item Prope	rties Tables and Curves						
🚡 🧕 Custom - Visualization F	Alminim							
Fans 👘	Property:							
🗄 🖀 Heat Sinks	Specific heat		-					
🖶 🏃 Materials								
🗄 👌 Compressible Liquic	Temperature	Specific heat				pecific heat		
🖽 🛶 Gases	2 K	0.11 J/(kg*K)	_	1180.00 J/	/(kg*K) ^D			
🗄 🗄 Liquids	4 K	0.3 J/(kg*K)	_					
🛓 🔥 Non-Newtonian Liq	8 K	0.9 J/(kg*K)		983.35				
🕀 📣 Real Gases	10 K	1.41 J/(kg*K)	_	786.70				
🛓 🖶 🦈 🌍 Solids	15 K	4.6 J/(kg*K)	_					
📥 🧌 Pre-Defined	20 K	8.9 J/(kg*K)	=	590.05				
Alloys	40 K	78 J/(kg*K)						
Ceramics	80 K	376 J/(kg*K)		393.41	<+ +			
🛅 Glasses an	150 K	675 J/(kg*K)		196.76				
🛅 IC Package	250 K	858 J/(kg*K)		130.10				
🛅 Laminates	298.1 K	902 J/(kg*K)		0.11				ĸ
Metals	400 K	951 J/(kg*K)		2.00	312.47 157.23	622.9 467.70	93 933. 778.17	.40
🛅 Non-isotrop	600 K	1037 J/(kg*K)	-			emperature		
Polymers Semicondu Semicondu Semicondu Perforated Plates Input the data with different temperature.								
\Metals		Aluminum					SI (m-kg-s)	




Input the data from layout to obtain the thermal conductivity

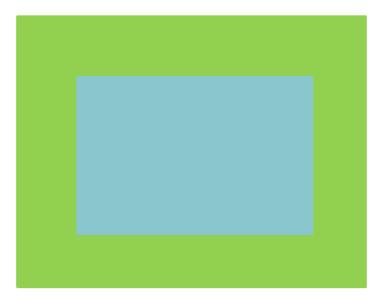
Conductor material density	8960 kg/m^3
Conductor material specific heat	385 J/(kg*K)
Conductor material conductivity	401 W/(m*K)
PCB total thickness	0.0016 m
Conducting layers	(Table)
In-plane (planar) conductivity	23.7149956 W/(m*K)
Through-plane (normal) conductivity	0.318603754 W/(m*K)
	1050 15700 Lgl 40
Effective specific heat	723.254549 J/(kg*K)
Number of conducting layers	4





Using the same 3D model for different case

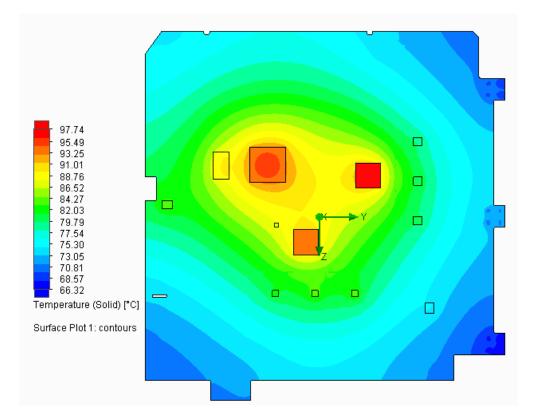
Simulate different case for lie-down and upright


Model : natural convection (steady state)

➡

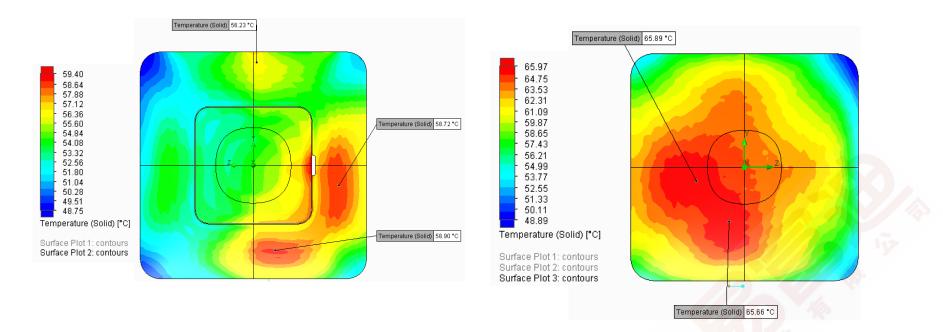
Housing is simplified with removing unnecessary feature

Use thermocouple to measured the chip data to obtain the properties of chip.



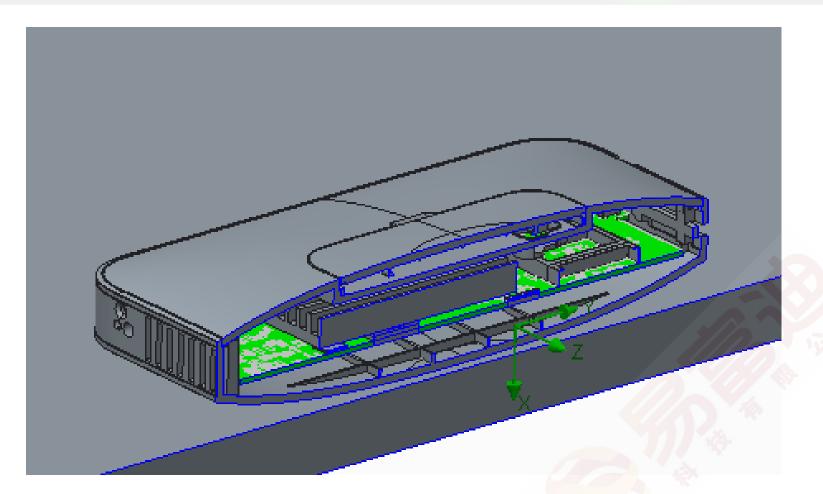
Using the temperature to obtain the properties of chip.(thermal resistance, power consumption...)

Temperature distribution



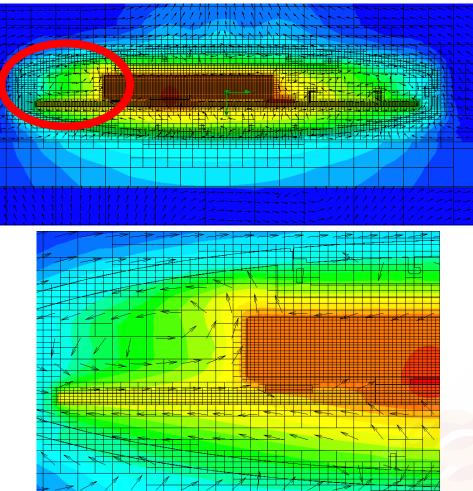
Tuning the thermal properties of chips and pc board

*Power consumption is reference on datasheet.

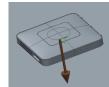


Housing temperature distribution

According to the temperature distribution to design the different feature and solution.




The 3D model of housing and pcba.

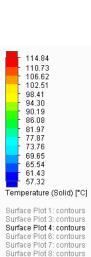

ARCADYAN TECHNOLOGY CORPORATION 2011 Copyright

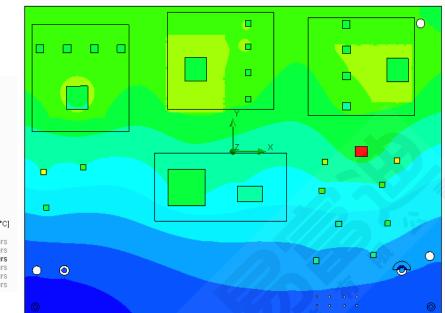
Partial cell : between solid and fluid

arcadyan Simulation results

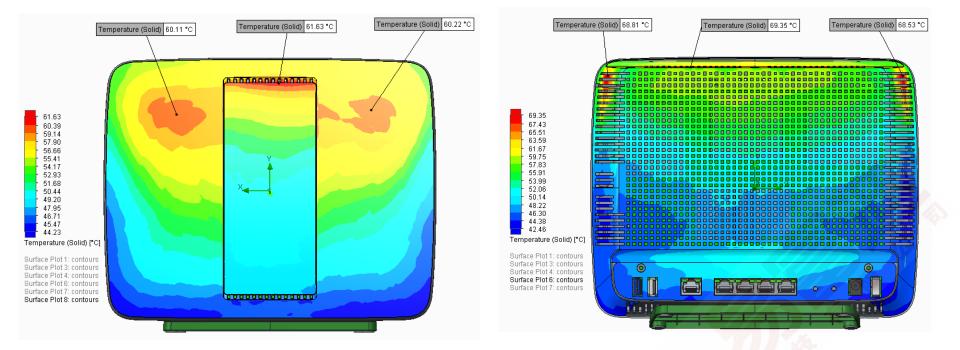
Lie-down

Component	Measured temp.(°C)	d temp.(°C) Simulation temp.(°C)	
CPU	100.19	100.96	0.77
2.4G	95.82	94.06	-1.76
5G	98.55	97.74	-0.81
BASE-CPU	67.20	65.52	-1.68
COVER-CPU	72.93	75.32	2.39
BASE-LED	60.24	58.89	-1.35
COVER-LED	51.72	51.86	0.14


τ	Jpright
Measured temp.(°C)	Simulatio temp.(°C
90.41	91.35


Component	Measured temp.(°C)	Simulation temp.(°C)	Error (°C)	
CPU	90.41	91.35	0.94	
2.4G	86.17	84.31	-1.86	
5G	91.36	90.51	-0.85	
BASE-CPU	53.15	54.24	1.09	
COVER-CPU	65.78	65.22	-0.56	
BASE-LED	52.27	52.14	-0.13	
COVER-LED	49.42	50.12	0.7	

Post processing : showing the flow field and the temperature distribution of pcb



Simulation results

Post processing : put the temperature probe on housing

arcadyan

• High performance with small housing.

 \blacklozenge No venting hole with high power consumption.

• Power consumption, radiation and thermal resistance.

• Cost and lead time.

Thank you for your attention !

ARCADYAN TECHNOLOGY CORPORATION 2011 Copyright.