散熱片的暫態分析理論推導與數值分析

Auras Technology Co.
RD III Cloud server Dept. Department
RD director: Honglong Chen
6 Oct., 2016

CONTENT

- > Research motivation— transient solver correct??
- > Energy equation PDE derivation
- ➤ Mathematically solving 1D T(x,t) by separation variable
- > Numerically solving 1D T(x,t) by Flotherm
- > Conclusion

RESEARCH MOTIVATION

- Changes of electronic cooling eco system
 - iPad/iPhone corrodes PC market share
- Cloud server function evolution towards energy saving -> idle constantly
- Power-up suddenly for complex tasks
 - Heat sink transient phenomenon needs to study for reliability

SCHEMATICS OF FIN PROFILE EQUATIONS STEADY STATE SOLUTION

$$Q_{in} - Q_{out} + Q_g = Q_{st} \implies Q_{in} - Q_{out} = 0$$

$$\implies$$
 $Q_{\text{cond-net}} + Q_{\text{conv-net}} = 0$

$$Q_{\text{cond-net}} = Q_{\text{in}} - Q_{\text{out}} = Q_x - Q_{x+dx}$$

$$\implies$$
 -kA $\frac{\partial^2 T}{\partial x^2}$ dx = $h p dx (T - T_{\infty})$

$$Q_{cond-net} + Q_{conv-net} = 0$$

$$\implies -kA \frac{\partial^2 T}{\partial x^2} dx + h p dx (T - T_{\infty}) = 0$$

$$kA \frac{\partial^2 T}{\partial x^2} - h p (T - T_{\infty}) = 0$$

$$\frac{\partial^2 T}{\partial x^2} - \frac{hp}{kA} (T - T_{\infty}) = 0$$

BCs

(1)
$$T(0) = T_b$$
 (2) $\frac{\partial T}{\partial X}\Big|_{x=1} = 0$

To nondimensionlize the following equation:

Let
$$\theta = \frac{T - T_a}{T_w - T_a}$$
 $X = \frac{X}{b}$ $\frac{hp}{kA} = m^2$ $M = \sqrt{\frac{hp}{kA}}$ b

$$\frac{\partial^2 T}{\partial x^2} - \frac{hp}{kA} (T - T_{\infty}) = 0$$

$$\frac{(T_W - T_\infty)}{b^2} \frac{\partial^2 \theta}{\partial x^2} - m^2 \left((T_W - T_\infty) \theta + T_\infty - T_\infty \right) = 0$$

$$\implies \frac{\partial^2 \theta}{\partial X^2} - M^2 \theta = 0$$

BCs

(1)
$$\theta(0)=1$$
, (2) $\frac{\partial \theta}{\partial X}\Big|_{x=1}=0$

$$\theta(X) \to \frac{\operatorname{Cosh}(M(1-X))}{\operatorname{Cosh}(M)}$$

FLOTHERM STEADY STATE RESULT VALIDATED BY THEORETICAL RESULT

 $\label{eq:Dimension} \mbox{Dimension:} \quad t = 1 mm \quad \mbox{\underline{L}} = 108 mm \quad b = 40 mm$

Material: AL 6063 $k = 204 \frac{W}{m \cdot C}$

h (3.5m/s): $h = 40 \frac{W}{m^2 C}$

$$M = \sqrt{\frac{2 \cdot h}{k \cdot t}} = 19.803 \frac{1}{m}$$

Bourdary condition: $T_b = 70C$ $\frac{d}{dx}T_e = 0$ $T_a = 35C$

$$\mathbf{T}(\mathbf{x}) = \left(\mathbf{T}_b - \mathbf{T}_a\right) \cdot \frac{\cosh[\mathbf{M} \cdot (\mathbf{b} - \mathbf{x})]}{\cosh(\mathbf{M} \cdot \mathbf{b})} + \mathbf{T}_a$$

Fin temperature distribution

— Theoretical result

□□□ Flotherm result

FIN EQUATION TRANSIENT ANALYSIS

To Non-dimensionalization

Let
$$\theta = \frac{T - T_b}{T_b - T_\infty}$$
, $X = \frac{x}{b}$, $M = \sqrt{\frac{2h}{kt}}$ b, $T = \frac{t\alpha}{b^2}$

$$\frac{\partial^2 T}{\partial x^2} - m^2 (T - T_\infty) = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

$$= > \frac{\Delta T}{b^2} \frac{\partial^2 \theta}{\partial x^2} - m^2 \Delta T \theta = \frac{1}{\alpha} \frac{\Delta T}{b} \frac{\alpha}{b^2} \frac{\partial \theta}{\partial t}$$

$$= > \frac{1}{b^2} \frac{\partial^2 \theta}{\partial x^2} - m^2 \theta = \frac{1}{\alpha} \frac{\alpha}{b^2} \frac{\partial \theta}{\partial t}$$

$$= > \frac{\partial^2 \theta}{\partial x^2} - m^2 b^2 \theta = \frac{\partial \theta}{\partial t}$$

$$= > \frac{\partial^2 \theta}{\partial x^2} - M^2 \theta = \frac{\partial \theta}{\partial t}$$
BCs
$$\theta(0) = 1 \theta'(1) = 0$$

SEPARATION OF VARIABLES TO SOLVE PDE

$$\frac{\partial^2 \theta}{\partial X^2} \cdot M^2 \theta = \frac{\partial \theta}{\partial \tau}$$
BCs
$$\theta(0) = 1 \quad \theta'(1) = 0$$

Separation variables for analitical solution

Let $\theta = \Phi T$

$$\frac{\partial^2 \theta}{\partial x^2}$$
 - $M^2 \theta = \frac{\partial \theta}{\partial \tau}$

$$\Rightarrow \Phi \text{"T} - M^2 \Phi \text{T} = \Phi \text{T'} \Rightarrow \frac{\Phi \text{"T}}{\Phi \text{T}} - M^2 \frac{\Phi \text{T}}{\Phi \text{T}} = \frac{\Phi \text{T'}}{\Phi \text{T}} \Rightarrow \frac{\Phi \text{"}}{\Phi} = \frac{T'}{T} + M^2 = -\lambda^2$$

$$\Rightarrow \frac{\Phi''}{\Phi} = -\lambda^2$$

$$\Rightarrow \Phi$$
"+ $\lambda^2 \Phi = 0$ ---(1)

$$\Rightarrow \Phi = A \operatorname{Cos}(\lambda X) + B \operatorname{Sin}(\lambda X)$$

From BCs $\Phi(0)=0 \Rightarrow \Phi=A \sin(\lambda X)$

From BCs X'(I)=0
$$\Rightarrow$$
 X'(I)= λ ACos(λ *I)=0, λ = $\left(n+\frac{1}{2}\right)\pi$, n=0,1,2,3

$$\Rightarrow T' + M^2 T + \lambda^2 T = 0 \qquad ---(2)$$

$$\Rightarrow T(\tau) = e^{-(m^2 + \lambda^2)\tau}$$

$$\theta(X,\tau) = \sum_{n=0}^{\infty} A_n \sin(\lambda_n X) e^{-(m^2 + \lambda_n^2)\tau}$$

ANALYTICAL SOLUTION VALIDATION

DIFFUSIVITY OF 6063

Thermal diffusivity of selected materials and substances^[10]

Material +	Thermal diffusivity (m ² /s)	Thermal diffusivity (mm²/s)
Pyrolytic graphite, parallel to layers	1.22 × 10 ⁻³	1220
Silver, pure (99.9%)	1.6563 × 10 ⁻⁴	165.63
Gold	1.27 × 10 ⁻⁴ [11]	127
Copper at 25 °C	1.11 × 10 ⁻⁴ ^[12]	111
Aluminium	9.7 × 10 ⁻⁵ [11]	97
Al-10Si-Mn-Mg (Silafont 36) at 20 °C	74.2 × 10 ^{-6 [13]}	74.2
Aluminium 6061-T6 Alloy	6.4 × 10 ⁻⁵ [11]	64
Al-5Mg-2Si-Mn (Magsimal-59) at 20 °C	44.0 × 10 ⁻⁶ [14]	44.0
Steel, AISI 1010 (0.1% carbon)	1.88 x 10 ⁻⁵ [15]	18.8

AL6063 α =80mm²/sec

ANALYTICAL SOLUTION VALIDATION

Dimension: t = 1mm L = 108mm b = 40mm

Material: AL 6063 $k = 204 \frac{W}{m \cdot C}$

h (3.5m/s): $h = 40 \frac{W}{m^2 C}$

 $M = \sqrt{\frac{2 \cdot h}{k \cdot t}} = 19.803 \frac{1}{m}$ $M \cdot b = 0.792$ $\alpha = 80 \frac{mm^2}{sec}$

Bourdary condition: $T_b = 70C$ $\frac{d}{dx}T_e = 0$ $T_a = 35C$

0.792 $\alpha = 80 \frac{mm^2}{sec}$ $\frac{d}{dx}T_e = 0$ $T_a = 35C$ Fin temperature rising curves AL 6063

ANALYTICAL SOLUTION VALIDATION

Dimension: t = 1mm L = 108mm b = 40mm

Material: Cu 1100 $k = 396 \frac{W}{m \cdot C}$

h (3.5m/s): $h = 40 \frac{W}{m^2 C}$

 $M = \sqrt{\frac{2 \cdot h}{k \cdot t}} = 14.213 \frac{1}{m}$ $M \cdot b = 0.569$ $\alpha = 111 \frac{mm^2}{sec}$

Bourdary condition: $T_b = 70C$ $\frac{d}{dx}T_e = 0$ $T_a = 35C$

Fin temperature rising curves

x (mm)

 T_b

FLOTHERM TRANSIENT MODEL

Spec.

Material:

AL 6063/ K 200W/m C

Ambient: 35C

Base temp: 70C

h: 40W/m² C

FLOTHERM STEADY & TRANSIENT MODEL

Steady state result

Transient state result

FLOTHERM MONITOR POINTS

THEORETICAL RESULT V.S. FLOTHERM RESULT

x (mm)

CONCLUSION

- > Transient analysis is a trend for evaluating mobile fanless devices and test timing duration of heat sink performance test platform.
- > Steady state solution is easy to validate for numerical simulation for only space variable (x,y,z) involved.
- > Transient state solution is difficult to validate for time variable t involved other than space domain
- ➤ After using theoretical analysis to validate Flotherm transient module, it is found the trend is in agreement with theoretical result with good accuracy!!.
- > Future work validate by 2D theoretical solution.

THANKS FOR YOUR ATTENTION.