大塚資訊集團 🧭 tsuka 🗊 🗞 易富迪

2023 台灣 Simcenter 用戶大會

2023 Taiwan Simcenter User Conference

2023 NOV 17

Agenda

時間	議程	主講人
08:30 - 09:00	Registration / Welcome	Coffee
09:00 - 09:15	Welcome Speech	簡志明 執行長 易富迪科技股份有限公司 郭一龍 總經理 大塚資訊科技股份有限公司
09:15 - 09:25	西門子智慧製造創新技術	陳晧璋 總經理 台灣西門子軟體工業股份有限公司
09:25 - 10:10	Simcenter Flotherm Flexx v2304 / v2310 功能介紹	Voon Hon Wong, PhD. Siemens Industry Software Pte. Ltd.
10:10 - 10:30	Simcenter STAR-CCM+ v2306 最新版功能介紹	卞志堅 資深顧問 台灣西門子軟體工業股份有限公司
10:30 - 10:55	Coffee Break	
10:55 - 11:20	System Thermal Design Process Sharing	劉立崗 博士 易富迪科技股份有限公司
11:20- 11:45	Numerical analysis and optimization of multiple blade modules	鄭偉隆 副理 微星科技股份有限公司
11:45 - 12:10	Wireless product thermal design	徐輔鴻 經理 明泰科技股份有限公司
12:10 - 13:10	Lunch	
13:10 - 13:35	淺談 FloEFD 於智能居家產品設計到生產應用	黃仁傑 智聯網開發部副理 沅聖科技股份有限公司
13:35 - 14:05	掛載拋投之CFD模擬&轂帽鰭設計分析技術建立	飛彈火箭研究所氣動力學組 國家中山科學研究院
14:05 - 14:30	電動車集成式熱管理	戴嘉慧 科長 鴻華先進科技股份有限公司
14:30 - 15:00	Tea break	
15:00 - 15:25	Simcenter MicReD 解決方案的規劃及發展	許欽淳 博士 台灣西門子軟體工業股份有限公司
15:25 - 15:50	T3Ster量測案例分享	曾嘉玲 主任工程師 易富迪科技股份有限公司
15:50 - 16:00	Lucky draw and clos	ing
16:00 - 17:00	全新熱特性量測實驗室參訪介紹	蔡杰修 資深顧問 易富迪科技股份有限公司

易富迪科技聯絡方式:

地址:新北市板橋區文化路二段 285 號 19F(江子翠捷運站 2 號出口直走步行 2 分鐘) 電話:+886-2-87724131 ext. 1889 陳小姐 傳真:+886-2-29595663 上課或 License 問題:<u>CSD@efd.com.tw</u> 軟體使用問題:<u>CSD@efd.com.tw</u>

2023台灣 Simcenter 用戶大會

2023 Taiwan Simcenter User Conference

Simcenter Flotherm Flexx v2304 / v2310 功能介紹

Voon Hon Wong, PhD. Siemens Industry Software Pte. Ltd.

Simcenter Flotherm Flexx 2310 new features

EFD Corporation User Conference November 2023

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

SIEMENS

Introduction and reminder

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Simcenter Flotherm Flexx Release schedule

Two releases at six month intervals delivering constant stream of new features and enhancements

Simcenter Flotherm 2304 features

10x speed up of pre-processing

- Models with 100,000+ objects takes longer to prepare compared to solution time
- New translator

BCI-ROM Export - single calculation for all export formats

Updated MCAD Bridge

- Supports Siemens CAD formats (NX, Solidedge), Parasolid
- · Voxelization supported on multiple cores
- New Part number

Updated Siemens UI

Voxelize Speed	3 Rays	1 Ray
MCAD Bridge 2304	2m 28s	46s
MCAD Bridge 2210	N/A	2h 20m 54s

n Hrs

Time

and

r

SIEMENS

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Simcenter Flotherm XT 2304 features

EDA Bridge - Independent Thermal Territories

· Need not be linked to a component on the board

EDA Bridge – Improved Stack Up Editor

- Multi-select .
- Double click to edit
- Local units update

SmartPCB update

- · Improved performance: user controlled auto update for node calculations. User controlled net outline display. Min. node size displayed.
- Joule heating Hyperlynx PI co-simulation: Auto detection of . powered nets. Joule heat Global Goal created automatically.

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Simcenter Flotherm XT 2304 features

Parametric Study Update - Network Assembly attached thermal attributes can be varied.

Model Interoperability - transfer of Flotherm XT models to Flotherm using XtXml format

- Supports Smartparts ٠
- But project data not yet supported (assembly information only)
- Make use of MCAD Bridge to read in XtXml files •

z

Mag

SIEMENS

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Simcenter Flotherm 2310

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

SIEMENS

Embeddable BCI-ROM Library Interaction of Power Maps Siemens UX updates Documentation updates

Embeddable BCI-ROM

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Embeddable BCI-ROMs as IC Package Compact Models

<u>Challenge:</u> Detailed thermal models of IC packages expose sensitive intellectual property, while standardized compact models do not support transient simulations or multiple heat sources.

Page 10 Unrestricted | © Siemens 2023 | Simcenter Flotherm Flexx 2310 What's New | Siemens Digital Industries Software

SIEMENS

<text><text><text><text><text>

Embeddable BCI-ROMs : Author Workflow

Workflow:

- · Create detailed model of device using modeling best practices
- Ensure grid independence
- Attach ambient attributes to domain faces with meaningful names. The consumer of the embeddable BCI-ROM will use these as references to position the device.

Embeddable BCI-ROMs : Author Workflow

Workflow:

- · Assign meaningful names to the heat sources and monitor points.
- The consumer of the embeddable BCI-ROM will use these names to interact with the model.

Embeddable BCI-ROMs : Author Workflow

Workflow:

- · Extract the embeddable BCI-ROM
 - Include Heat Source Geometry [optional]
 - Include Probe Location [optional]
 - <u>These optional settings do not impact results!</u> They may be useful as additional positioning aides for the embeddable BCI-ROM consumer.
 - <u>HTC Range</u>: Large enough to cover all deployment scenarios: Recommended:
 - 0.1 to 1,000,000 W/m²K
 - <u>Acceptable Relative Error</u>:
 - Default of 0.001 is usually a good balance between extraction speed and accuracy

Embeddable BCI-ROMs : Author Workflow

Workflow:

- · Extraction process will create a file with an .erom extension.
- Prepare model for distribution:
- Select target assembly ٠
- Use the embeddable BCI-ROM option in the ٠ geometry palette: 🗾
- · Find the desired .erom file
- · Add attributes:
 - · Heat Source attributes
 - · Surface attributes to set emissivity/color
 - Grid constraints •

Page 15 Unrestricted | © Siemens 2023 | Simcenter Flotherm Flexx 2310 What's New | S

Embeddable BCI-ROMs : Author Workflow

Workflow:

- · Prepare for distribution:
- · Validate results by comparing to detailed model.
- Save embeddable BCI-ROM to ٠ Library
- Export Library and distribute •

ow		System (C:) > Embe	ddable BCI-ROMs	
		Name	^	
		HDAP.eron	ı	
	Embeddable BCI-	ROM	Embeddable BC	I-ROM
	- HDAP		- HDAP	
	Volume		💓 Volume	
	Faces		🔻 💋 Faces	
	🔻 📦 Sources		🔻 💋 Top	
	🛸 Active	Layer	Ø E	EROMFace1
	📦 Active	Layer:1	BGA	
	Probes		Sides	s
	n Attachments	Notes	on Attachments	Notes
	No Attachment		+ Surface	No Attachment
	No Attachment			No Attachment
	Create New			🔋 Create New
	Load From Libr	ary	+ Radiation	Concerner
				FR4
iens D	inital Industries Software			SIEME
	igital industries optiwale			

Page 16 Unrestricted | © Siemens 2023 | Simcenter Flotherm Flexx 2310 What's New | Siemens Digital Industries Software

Embeddable BCI-ROMs : Consumer Workflow

Workflow:

- · Use reference geometry contained in the 'Faces' node to position the embeddable BCI-ROM
 - Translate, Rotate, Copy, Paste, Align are supported

Embeddable BCI-ROMs : Consumer Workflow

Workflow:

- Use geometry contained in the 'Sources' node to assign or modify powers
 - A total power source attribute must be attached to each embeddable BCI-ROM source
 - Transient power profiles are defined with transient attributes

Attribute Data	Notes			0
	Name	Die Heat		
Source Type		Temperature		
		✓ Activate		
	Option	Total Source		•
	Total Source	3	w	-
Trans	ient Attribute	No Attachment 👻	Edit	

Page 19 Unrestricted | © Siemens 2023 | Simcenter Flotherm Flexx 2310 What's New | Siemens Digital Industries Software

Embeddable BCI-ROMs : Consumer Workflow

Workflow:

- Embeddable BCI-ROMs are automatically key-pointed like all other Simcenter Flotherm SmartParts.
- Grid constraints are used to define grid across and around the embeddable BCI-ROM
- Grid cells inside the embeddable BCI-ROM are ignored

SIEMENS

Embeddable BCI-ROMs : Consumer Workflow

Workflow:

- Use geometry contained in the 'Probes' node to track solution and post-process results.
- · Each probe will appear in Profiles during solve

Embeddable BCI-ROMs : Consumer Workflow

Workflow:

- Post-Processing
 - Visual:
 - Surface temperature plots
 - Plane plots are void inside embeddable BCI-ROM volumes
 - Numerical
 - Tables for embeddable BCI-ROM
 - · Faces:
 - Probes:
 - · Heat Sources:

EROM Fa	ices		
	Min EROM Surfaces Temperature (°C)	Max EROM Surfaces Temperature (°C)	Mean EROM Surfaces Temperature (°C)
Faces	93.455	103.26	100.7893
Faces	63.15	71.312	68.3356
Faces	56.703	60.481	57.94535

Tables		Fur Tables	
EROM Probe		EROM Source	
	Temperature (°C)		Power Dissipation
BGA Type 1 Die 1	55.7		(W)
BGA Type 1 Die 2	56	BGA Type 1 Die 1	0.1
PCA Type 1 Die 2	55.8	BGA Type 1 Die 2	0.1
BOA Type I Die 5	55.0	BGA Type 1 Die 3	0.1
F BGA Type 1 Die 4	56.3	BGA Type 1 Die 4	0.1

Page 22 Unrestricted | © Siemens 2023 | Simcenter Flotherm Flexx 2310 What's New | Siemens Digital Industries Software

Supporting Material

Best Practices:

- Description of the steps for the embeddable BCI-ROM author
- Best practices for model setup, extraction settings, and using embeddable BCI-ROMs in full Simcenter Flotherm models.

Validation Document:

 Comparison of detailed and embeddable BCI-ROM results for various applications and thermal environments.

Embed	Simcenter Flotherm™ dable BCI-ROM Best Practices	
	Software Version 2310	
	▲ October 2023	
	Simcenter Flotherm™ Embeddable BCI-ROM Valida	ation
	Software Version 2310	
	October 2023	
		SIEIVIENS

Page 23 Unrestricted | © Siemens 2023 | Simcenter Flotherm Flexx 2310 What's New | Siemens Digital Industries Software

EROM Demonstration

Examples

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Example – BGA Package

Detailed Model:

- Substrates modeled explicitly
 - FOWLP (2217 objects)
 - BGA substrate (2179 objects)
- 378 solder balls
- 804 bumps
- Two die
- 40 capacitors
- Total:
 - 12682 objects
 - 11 million grid cells

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

SIEMENS

Example – Installed in SmartPhone model

Detailed Model:

- 5 Detailed Packages
 - 2 instances of HDAP from previous slide
 - 2 other BGAs
 - QFN
 - 25,909 objects
 - 26.6 Million grid cells
 - Solve time (steady state): 3.5 hours

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Example – Embeddable BCI-ROM Version

Simplified Model:

- The 5 packages are now represented with embeddable BCI-ROMs
 - All detailed packages deleted
 - 236 objects
 - 0.1 Million grid cells
 - Solve time (steady state): ~30 seconds

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Example – Chiplet

Detailed Model:

- High fidelity thermal model of a 16 core chiplet
- 778,870 grid cells required for the chiplet
- Transform chiplet model into embeddable BCI-ROM and position 6 copies of it on an interposer/substrate structure
- Package with embeddable BCI-ROMs requires ~100k grid cells.
- Package with high fidelity chiplet models requires ~8M cells
- Results within 1% in this case

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Library Interaction of Power Maps

Library Interaction of Power Maps

Power maps can be part of the Simcenter Flotherm Library

Simcenter Flotherm XT 2310

Parametric Study Update

<u>Challenge:</u> Making wide-spread changes to a large parametric study can be time consuming when each scenario must be deleted individually.

Solution:

- Ability to delete multiple selected scenarios in one operation.
 - Via keyboard
 - or right click menu option.

Base Case	Scenario 1	Scenario 2	Scenario 3	Scenario 4	S			Scenario
500.00 W/(m² K)	625.38 W/(m ² K)	575.43 W/(m ² K)	900.10 W/(m ² K)	175.83 W/(m ² K)	75.9.5 Sav	e Selected Scenario	o Images	5.975 W/(
20.000 W/(m ² K)	700.30 W/(m ² K)	825.18 W/(m ² K)	450.55 W/(m ² K)	100.90 W/(m ² K)	125. Cel	ete Selected Scena	rios	00.20 W/(
200.00 W/(m² K)	25.975 W/(m² K)	375.63 W/(m² K)	100.90 W/(m² K)	825.18 W/(m ² K)	475.53 W/(m² K)	175.83 W/(m² K)	350.65 W/(m² K)	225.78 W/(
Solve Complete	Solve Complete	Solve Complete	Solve Complete	Solve Com				
700.00 s	700.00 s	700.00 s	700.00 s	700.00				
					-			10
9.8806 °C	9.0555 °C	9.3326 °C	7.8525 °C	14.745 °C	21.017 °C	8.4231 °C	12.050 °C	33.888
8.4585 °C	6.0507 °C	6.0758 °C	5.6552 °C	11.365 °C	13.916 °C	5.5260 °C	7.3877 °C	9.6400 °

Page 35 Unrestricted | © Siemens 2023 | Simcenter Flotherm Flexx 2310 What's New | Siemens Digital Industries Software

Exporting Projects

<u>Challenge:</u> Cannot easily transfer Flotherm XT projects to other Siemens tools.

Solution:

- Export entire project with geometry and model setup data
- · Export project from parametric study
 - Single scenario
 - All Scenarios

Note: Xtxmlp format does not include

- Transient time patch data
- Suppressed components

Page 36 Unrestricted | © Siemens 2023 | Simcenter Flotherm Flexx 2310 What's New | Siemens Digital Industries Software

Save time by deleting multiple scenarios at once.

Smart Parts Update

<u>Challenge:</u> Free blowing pressure drop treatment for fans and flow devices is not always applicable in every situation. Not consistent with other Siemens tools

Solution:

- Increase options for Fan Pressure Drop Type to reflect options available in Simcenter FLOEFD
- Options now include:
 - Total Pressure based calculation
 - Static Pressure based calculation

Improved confidence by achieving identical results in different tools.

Page 37 Unrestricted | © Siemens 2023 | Simcenter Flotherm Flexx 2310 What's New | Siemens Digital Industries Software

Smart Parts Update – Point Goals

<u>Challenge:</u> When assemblies with point goals based on global coordinates are saved in the library and reused in different projects, the point goal location is incorrect.

Solution:

- Point goals based on local coordinate system of parent assembly.
- Local coordinate based point goal will move with assembly if:
 - Assembly location is changed in project
 - Assembly is saved in library and reused in new different project.

Reduce modeling errors and save time by ensuring goals are correctly positioned.

✓ × Active ✓ Active	^
General	^
Point Type Define Point	~
Position Coordinate System Global	~
Point Position X 0.0000 m Global	
Point Position Y 0.0000 m	
Point Position Z 0.0000 m	
Show Annotation	

Detailed Package Model Export Update

Challenge: Detailed packages created in Simcenter Flotherm Package Creator have to be processed through MCAD Bridge before they can be used in Simcenter Flotherm.

Solution:

- Export Simcenter Flotherm ready detailed models from Simcenter Flotherm Package Creator directly.
 - Floxml format
 - · Stair-stepped lead frames by default to avoid overlaps
 - · Where necessary temperature dependent material properties exported as constant at default temperature

Page 39 Unrestricted | © Siemens 2023 | Simcenter Flotherm Flexx 2310 What's New | Siemens Digital Industries Software

Scripting Capabilities

Challenge: Need to be able to investigate various board representations in a reproducible manner.

Solution: Record the workflow and playback with alternative designs.

- Controls added to record and playback scripts.
- Scripts can be edited to create workflow alterations.
- Note:
 - Scripting support is available for commands • in the main window only at this time
 - Support for dialog windows (including library swapping) is planned.

Page 40 Unrestricted | © Siemens 2023 | Simcenter Flotherm Flexx 2310 What's New | Siemens Digital Industries Software

Save time with a streamlined flow and improve accuracy with better models

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

SIEMENS

Contact

Hon Wong

Electronics and Semiconductor Business Development Manager Fluids and Thermal Solution Domain

Phone +65 6357 2743 Mobile +65 9129 0302

E-mail hon.wong@siemens.com

2023台灣 Simcenter 用戶大會

2023 Taiwan Simcenter User Conference

Simcenter STAR-CCM+ v2306 最新版功能介紹

卞志堅 資深顧問 台灣西門子軟體工業股份有限公司

Simcenter STAR-CCM+ **Simcenter SPH Flow Simcenter Battery Design Studio**

Release Highlights

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Version 2306

SIEMENS

Williams Advanced Engineering (WAE)

develops high-performance Li-ion batteries using Simcenter

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Williams Advanced Engineering (WAE) develops high-performance Li-ion batteries for Formula E and other racing series using Simcenter

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Where engineering meets tomorrow Investment imperatives for a comprehensive digital twin strategy

Where engineering meets tomorrow Investment imperatives for a comprehensive digital twin strategy

3D-CAD in parallel simulation for significant memory reduction

Challenge

Model the complexity of real-world geometries without oversimplifying assumptions, while handling assemblies of 1,000s of parts with ease.

Solution

CAD geometry only instantiated on a single node during parallel simulations

Benefits

<u>Model</u> the complexity

Reduce memory usage when handling geometry in parallel simulations

Efficiently handle complex CAD assemblies

Mesh to CAD: Convert Tessellation to CAD

Model the complexity

Challenge

CAD is the unchallenged way to accurately represent and handle product geometry. But sometimes geometric representations are only available in a tessellated format

Solution

Create CAD bodies from tessellated mesh Use 3D-CAD operation to create a solid body

Benefits

Use tessellated geometries for e.g. In-Cylinder combustion simulations* by converting the tessellated surfaces to CAD bodies Currently Supports: .INP and .STL import,

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Quickly convert tessellated geometries into CAD

*Note: This feature is not meant and will not be capable to generate a complex assembly from a huge, tessellated grid

SIEMENS

Application Focus – Model the Complexity

Tackle high-fidelity E-powertrain simulations with ease

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

E-machine performance workflow update - Create skewed rotor sector

Challenge

High effort of simulating full e-Motor geometries while symmetry could be leveraged

Solution

Reduction of the computational domain size to a sector now supported for Skewed Rotor designs Available through the e-machine performance workflow import (Skewed rotor sector is supported from Simcenter SPEED export)

Benefits

- Faster simulations with reduced domain size leveraging symmetry
- Method consistency across all e-machine architectures

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Electromagnetic modeling of lamination layers

Challenge

Permanent magnet radial e-machines stator made of several hundreds of thin laminated steel layers. Model setup complex with high element count

Solution

Bulk lamination model models effects of lamination stack (ohmic heat due to eddy currents losses) without explicitly considering laminated geometry.

Benefits

<u>Model the complexity</u>

Significantly simplified model preparation

- No need for mesh that resolves the layered geometry nor the insulation between the layers
- A single mesh element that spans several layers is sufficient

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

High fidelity modeling of e-machine power losses due to eddy currents

Faster simulations for skewed rotor

designs

3D sector model

SIEMENS

Automated battery data analysis setup

Challenge Solution

Battery Module Reports option with multi-valued monitor

- Automatically generates hundreds of reports, monitors, and plots of entire pack cells' common quantities, grouped
- Supports thermal runaway model and equivalent circuit models related common field functions

Benefits

Productivity increase in battery data analysis

- · Concise simulation tree
- · Less prone to input errors
- · Removes the need to use scripting

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Comprehensive battery data analysis in 3 clicks

SIEMENS

Gradient-based (adjoint) optimization

Challenge

Direct parametric optimization may require a large number of design assessments, adjoint based topology optimization may lead to difficult-to-manufacture designs **Solution**

Gradient-based optimization

- Leverage adjoint solver in a parametric design study to get parameters' sensitivities
- Drive optimization algorithm to the closest local optimum using those sensitivities

Benefits

xplore the possibilities

- Faster convergence towards local best designs, especially for large number of parameters
- Single or multiple objectives
- Ensure manufacturability of your optimized design: smoother shapes with no design space violations

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Gradient-based Optimization

Automated process in Design Manager leveraging

- · Dedicated framework to define the gradient-based optimization study
- 3D-CAD and CAD Clients parameter sensitivities from adjoint simulations
 - · Supporting smooth geometries without sharp edges or corners
 - · Gradient-based algorithms (Sequence Quadratic Programing) and optimization focused post-processing

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Find better designs faster

SIEMENS

Clipping and Slicing Option for Simcenter STAR-CCM+ Web Viewer

Challenge

Interactively sharing and exploring engineering insights used to require the installation of Simcenter STAR-CCM+ (Viewer) **Solution** Simcenter STAR-CCM+ Web Viewer Quick

interactive data analysis from a browser, now with clipping and slicing options

Benefits

Explore and share your results from any device, anytime, anywhere, now with further added fidelity:

- Dynamically slice through volumetric data to understand flow behaviour
- Quickly understand geometry by clipping

Accelerate engineering decision making in the web

https://cloud.sw.siemens.com/starccmviewer/

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

SIEMENS

<section-header>

Continued GPU performance improvements

Even faster simulations on GPUs

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Continued expansion of solvers supporting GPU acceleration

Challenge

GPU-enabled performance enhancements limited to applications by the set of ported solvers **Solution**

Continue the expansion of GPU-based acceleration to an increasing set of solvers:

- Coupled Flow and Energy Solver
- PISO Solver

<u>Go fasten</u>

- Wall-modeled Large Eddy Simulation (LES)
- Passive scalar solver
- Flamelet combustion modelling
- Temperature Polynomial Material Properties
 Benefits

New application enablement

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

GPU native coupled flow and energy solver

Faster external aerodynamics simulations with native GPU implementation of the coupled flow and energy solver

CPU-equivalent flow solutions ensured by maintaining a unified code base

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

110M cells aerospace aerodynamics within 40 minutes on GPU

The reduction of 84% in computing time is here evaluated comparing a CPU solution on 576 AMD EPYC 7532 to a GPU solution on 24 NVIDIA A100 cards.

SIEMENS

GPU native coupled flow and energy solver

Significant speedup for automotive external aerodynamics simulation with native GPU implementation of the coupled flow solver

100%

Up to 60% speed-up of automotive

vehicle external aerodynamics cases

The reduction in computing time is here evaluated comparing a CPU solution on 1024 AMD EPYC 7532 to a GPU solution on 24 NVIDIA A100 cards.

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

solver is not ported to GPU

Note: Grid Sequencing Initialization (GSI) of the coupled
GPU native wall-modeled Large Eddy Simulation

Further GPU acceleration of wall-modeled Large Eddy Simulation (LES) by porting the LES Off-Wall Wall Treatment option to GPU

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

More than 20% faster WMLES for vehicle external aerodynamics

GPU native passive scalar solver

Faster simulations involving the use of passive scalars with a native GPU implementation of the passive scalar solver

Equivalent solution between CPU and GPU hardware

 Example of Mixing Quality transient development in a mixing vessel

GPU accelerated mixing time analysis for mixing tanks

The reduction of 70% in computing time is here evaluated comparing a CPU solution on 192 AMD EPYC 7532 to a GPU solution on 4 NVIDIA A100 cards.

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

GPU native Flamelet modeling

Faster high-fidelity combustion simulations

- Flamelet Generated Manifold (FGM) with all available flame propagation methods
- Steady Laminar Flamelet and Chemical Equilibrium models
- Prompt, Thermal and Fuel NOx emissions models
- Combine with GPU enabled LES (2210) and PISO (2306) models for rapid, high-fidelity combustion simulations

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Speed up of Flamelet combustion modeling

GPU Acceleration – Continuous Performance Improvements

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

GPU Acceleration – Continuous Solver and Application Expansion

Create Point Probes from Table Data and Multivalued Monitoring

Challenge

Quantitative comparison of measured and simulated key quantities at a large number of critical locations ensuring correct match of data extraction locations

Solution

Go faster

Automatically create point probes from external (measurement locations) table data

Easier and automated monitoring of point probe arrays with a Multi-Valued monitor

Benefits

- Fast and error free setup and monitoring of probe arrays
- Concise presentation in simulation tree

Quick and reliable validation of complex simulations

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Create point probes from table data

Increase automation by creating point probes directly from a file table (standard .csv file)

- · Easily directly import of external data
- Avoid manually creating hundreds of probe points or writing Java code to set up an acoustic array
- Automated troubleshooting of grouped points with ability to highlight points both inside and outside of the meshed region

Example: Faster acoustics setup with seamless import of a multitude of predefined microphone probe locations

Set up many microphones from a simple .csv import

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Multi-valued monitors

Easier and automated plot creation for many parts with Multi-Valued Monitor

- Greatly improved workflow through usage of singular Monitor for multiple part values
- Assign multiple parts to a single Report and Monitor
- Avoid creating and managing a lot of reports, monitors, and plots to go with a multitude of parts or derived parts
- Concise presentation in simulation tree with only one monitor node for many parts

Application example: Easier and automated monitoring of microphone array

Create a monitor for hundreds of points in a few clicks

Where engineering meets tomorrow Investment imperatives for a comprehensive digital twin strategy

Simcenter STAR-CCM+ to Simcenter STAR-CCM+ co-simulation for Solid Mechanics and Fluid-Structure Interaction

Challenge

Run high-fidelity FSI from existing models quickly **Solution**

Co-sim complements the single simulation approach to FSI and allows to couple existing models of different .sim files

Benefits

Stay integrated

Pragmatic FSI simulation from already existing fluid and thermal .sim files

Supports strong and weak coupled applications **NOTE**

Whenever possible FSI should be approached as a single simulation with fluid and structure in the same .sim file

Collaborate to couple physics

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Simcenter Cloud HPC Multiple region support and compatibility

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Simcenter Cloud HPC

Licensing

- Simcenter STAR-CCM+ Hybrid SaaS license is prerequisite and required for local pre and post
- Credits purchased in bundles (1,000 100,000)
- Pricing structure provides best value for money when purchasing larger bundles and using larger clusters

Simcenter STAR-CCM+ specific features

- Four clusters available; 105 700 cores
- · Upload companion Java macros and external files
- Graphical solution monitoring via new Job Monitor

Contact your support engineer or sales representative for more information

Mesh Solution Tools Window Clusters size

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Simcenter SPH Flow

The STS leadership team has decided to accelerate the integration of SPH into Simcenter STAR-CCM+

- · Halt new feature development for the standalone Simcenter SPH Flow
- · Version 2306 will be the last release with new features
- Further releases will be maintenance only

2306 New features

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Simcenter STAR-CCM+ 2306 Top new features

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

Contact

Published by Siemens Digital Industries Software

Mahmood Alkhenaizi (Technical Product Manager) Product Management

Phone +973 39990208

E-mail Mahmood.Alkhenaizi@siemens.com

Unrestricted | © Siemens 2023 | Siemens Digital Industries Software

2023台灣 Simcenter 用戶大會

2023 Taiwan Simcenter User Conference

System Thermal Design Process Sharing

劉立崗 博士 易富迪科技股份有限公司

2023台灣 Simcenter 用戶大會

2023 Taiwan Simcenter User Conference

Numerical analysis and optimization of multiple blade modules

鄭偉隆 副理 微星科技股份有限公司

MSí

Numerical analysis and optimization of multiple blade modules system.

多模組系統的數值分析與優化

November 17th 2023 Enterprise Platform Solutions Weilung Cheng

Tech meets Aesthetic

以下簡報是微星科技內部資料,請各位先進 勿拍照或錄影,感謝大家的配合。

Tech meets Aesthetic

Agenda

Agenda

- Introduction
- Thermal Model Construction
- Simulation Condition Assumptions
- Numerical Analysis.
- Numerical Optimization
- Other Suggestions and Conclusion

Tech meets Aesthetic

MSí

Introduction

ms

- We using CFD Software FloTHERM to build numerical modules, expect reducing development cost, time, convergence development problem and improve design reliability.
- Case sharing: share part of our experience in the numerical analysis process and the thermal analysis done through this lecture.

2023台灣 Simcenter 用戶大會

2023 Taiwan Simcenter User Conference

Wireless product thermal design

徐輔鴻 經理 明泰科技股份有限公司

Wireless product thermal design

明泰科技CAE部 Andrew Hsu

Alpha公司簡介

Qisda NCG成員

明泰科技網通設備介紹 新世代網路通訊設備 客製化解決方案 AIOT MEC 中央及分布單元 (CU+DU) / 400 (GS-POI 光纖網路單元 光纖線路終端 容约 由 心 夺 擒; 固定式球型 5G 終端設例 監控攝影機 5G 小型基地台 Wi - Fi 6E Aesh路由器 雷達影像門鈴 Wi-Fi7 家用路由器 **ALPHA** Networks www.alphanetworks.com

明泰Thermal模擬

- 軟體: Flotherm: 主要使用 Flotherm XT: 輔助使用(較複雜外型產品)
- 產品設計種類
 - Switch
 - Wireless router/AP/CPE
 - XGS-PON
 - Small cell
 - Smart doorbell
 - IP-cam

Wireless product thermal design considerations

- Design Factors:
 - TDP (thermal dissipation power)
 - Housing size & material: usually PC/ABS
 - Opening (area/ratio): ratio <20%
 - Ambient temperature: usually 40-50°C for consumer product
 - Orientation:

ceiling mount

desktop

wall /pole mount

upright

ALPHA Networks

Heat transfer mechanism and design concept

- •同樣面積、設計良好的情況下,熱傳速度:
 - 熱傳導 > 熱對流 > 熱輻射

Heat dissipation concept

• 簡易的散熱架構示意圖 •兩個問題: IC • 主要的熱傳路徑為何? • 路徑上哪裡溫差大? PCB 熱介面材料 機構件 散熱器 內部空氣 傳導 機殼 機殼 對流 外部空氣(環境) 輻射 **ALPHA** Networks

Heat transfer path – fanless w/ metal case

Heat transfer path – fanless w/ plastic case

- 例 2: 塑膠機殼、透過自然對流散熱的產品
 - 熱介面材料規格? 面積?
 - 散熱器尺寸? 有效面積?
 - 是否考慮散熱器貼殼?
 - 開孔型式、面積?

Heat transfer path – with fan

Case study 1: 5G CPE

Housing material: PC
Orientation: desktop and wall mount
Dimension: 190x190x62mm
TDP = 24.5W
Ta = 45degC
Thermal solution: Heat sink w/ fan(3010 x1)

Wall mount

Actual thermal design

Fan

Temperature Results

All IC pass temperature spec.

Flow Results

Case study 2: Wifi-6 AP

Wifi-6 AP product info.

- Housing material: PC
- Orientation: ceiling and pole mount
- Dimension: 185x185x35mm
- TDP = 7.79W
- Ta = 50degC
- Thermal solution: Heat sink (exposed to air)

Pole mount

Thermal design concept

Key design considerations (ceiling mount):

- 1. Gap to ceiling: Larger is better, but cannot be too large.
- Housing bottom/heatsink material: Metal is better than PC. Also, it's best if heatsink can be exposed to air.

Alpha had applied our own patent to further increase heat dissipation.

Detail thermal design

Detail design:

19

19

Due to the nature of ceiling mount, it is better to dissipate heat from bottom heatsink.

Bottom heat sink (Al plate) is exposed to the air and contact with metal bracket to further reduce thermal resistance.

Also, housing material can affect thermal performance.

Simulation results

此案經過很多次的設變。以下面這組設計參數為例,其結果CPU的溫度Tj = 112.4度 (fail 2.4度)。

Ceiling gap = 10mm

Metal bracket connect with internal Al plate

Ceiling gap effect

當ceiling gap變大時,內部IC溫度會下降。但實際的gap仍要看客戶的需求。以這個案例來說,若將 gap從5mm加大到20mm時,CPU的溫度會降低10.2度。

Alpha patent illustrated

Conclusion

- Wireless產品線因發熱瓦數較小,大多使用無風扇自然對流設計。
- •5G CPE為Alpha首次使用風扇的無線產品。其他產品如Router, AP因傳輸速度已從Wifi-6提升到Wifi-7,發熱瓦數已>40W。故未 來會有越來越多須上風扇的設計。部分機種還有噪音需求。
- 針對無風扇設計, ceiling mount為worst case。在Wifi-6 AP的案例中, Alpha透過鋁片外接金屬bracket的設計來強化散熱, 同時 能滿足客戶在外觀設計上的需求。

2023台灣 Simcenter 用戶大會

2023 Taiwan Simcenter User Conference

淺談 FloEFD 於智能居家產品設計 到生產應用

黃仁傑 智聯網開發部副理 沅聖科技股份有限公司

GOLDTek Company Profile

COMPANY NAME	GOLDTeK Technology Co., Ltd.
HQ LOCATION	Taiwan 16F, No.166, Jian 1st Rd., Zhonghe Dist., New Taipei City 23511, Taiwan (R.O.C)
FACTORY LOCATIONS	China Factory: - Shenzhen Foxconn Campus (SMT + Assembly) None-China Factory: - Malaysia (SMT + Assembly)
ESTABLISH	August, 2008
CAPITAL	USD 10 Million
Foxconn Group	Joined the Group in 2014
IPO	June, 2017
HEAD COUNT	HQ: 180 persons, GOLDTeK Shenzhen Factory: 1,200 persons

linnoconn

Thermal test equipment

GT has temperature chambers in our laboratory, and we also work with 3rd party venders for thermal simulation report & related solution via temperature simulation tool.

Temperature Chambers in GT's laboratory

- Right: General temperature & humidity chamber, temperature range from -40°C to +150 °C, humidity from 10% to 98%
- Left: *Thermal shock chamber*, perform high & low temperature cycles within certain short period of time. High temperature ranges from 60 °C to 150 °C, low temperature ranges from -10 °C to -65 °C.

GOLDTek

Ife becomes smarter

Outdoor/Indoor Smart Camera Standard Product _Marimo

Marimo – Outdoor Smart Camera

Camera:

- Image sensor: 1080P, 2MP
- FOV: 106°(H), 56° (V), 127° (D)
- Resolution: 1920 x 1080
- Video compression: H.265 / H.264
- Night vision: 850nm IR LED x 4
- Motion detection: Yes

Connectivity:

- Wi-Fi: 802.11 b/g/n @2.4GHz
- Safety: WPA/WPA2, WPA-PSK/WPS2-PSK
- 433MHz communication with remote button

Interface:

- Power: 5V@1A power adapter
- Mic: Omni-directional
- Speaker: 1W, Built-in
- TF card slot: Built-in
- Antenna: Built-in

Environment:

- Operating condition: -20 $^\circ C$ to 45 $^\circ C$
- Humidity: <95%, non-condensing

Confidential information-strictly protected under the non-disclosure agreement.

Marimo Boundary conduction for structure analysis

23

Confidential information-strictly protected under the non-disclosure agreement.

Ennoconn

LED light sour 私凯 Brightek Asymmetrical light	ce distribu	utio 00 wing	n and	d the	erm	al c	COU	ntei	omer	s list d	iffere	Become ry of Er	s smarter
type, oval shape	3.85 Bie		Light and thermal powe measurement data table							wer ra ole	ratio actual		
T _A : 25 °C				IR LED型 號	安培(A)	電壓(V)	最大功丰 (W)	光功率占比	光功孝 (W)	熱功率占比	<u>熱</u> 功率 (W)	Rth jc=K/W	ΔT=Rth jc* (Power
Parameter	Symbol		Rating		1	1.694	1.694	48.468%	0.821	51.532%	0.873	9.000	7.855
Forward current	IF	max.	1 A										
Power consumption	Ptot	max.	2.2 W		0.75	1.621	1.216	51.119%	0.622	48.881%	0.594	9.000	5.349
Reverse voltage	IPF Va	max.	5 V		0.5	1.542	0.771	54.376%	0.419	45.624%	0.352	9.000	3.165
Junction temperature	Ti	max.	115 °C	· · · · ·	0.275	1.498	0.562	54 676%	0 207	45 224%	0.255	9.000	2 201
· · · · · · · · · · · · · · · · · · ·		min.	-40 °C	SL3838F85CQ00	0.375	1.450	0.502	54.07070	0.507	43.32470	0.200	5.000	2.231
Operating temperature	Top	max.	105 °C		0.25	1.449	0.362	56.385%	0.204	43.615%	0.158	9.000	1.422
Storage temperature	т.	min.	-40 °C		0.125	1.390	0.174	57.344%	0.100	42.656%	0.074	9.000	0.667
	' stg	max.	105 °C										
Soldering temperature	Tsol	max.	260 °C	260 °C	0.1	1.375	0.138	57.644%	0.079	42.356%	0.058	9.000	0.524
Thermal resistance junction	Rth	typ.	4.5 K/W	J	0.05	1.338	0.067	58.243%	0.039	41.757%	0.028	9.000	0.251
nnoconn		max.	9 K/W		Cont	fidential in	formatior	n-strictly pr	otected u	inder the n	on-disclo	sure agree	ment. 2 7

IR LED Uniformity measurement result

Confidential information-strictly protected under the non-disclosure agreement

Comparison of optical simulation results with actual measurement IR LED Irradiance chart (W/mm^2) mW/M^2 mW/m^2 mW/m^2 mW/m^2 WyzeBatte Distance Marimo2 Wyze OG 2000 rv 8.51E-10 0 15m 0.36 0.226 0.161 1.28 💘 8 M 25E-1 14m 0.439 0.258 0.186 .200 (1.28-1.261/1.261)*% 13m 0.5 0.29 0.215 = 1.5% 12m 0.59 0.344 0.236 0.66 0.395 0.288 11m 200 1500 0.82 0.46 0.34 10m 1000 500 3.4E-0 1.028 9m 0.575 0.418 0 4 M 0.48 5.1 🦏 1.261 0.725 -500 (5.1-4.9/4.9)*% 8m 1.7E-0 -100 = 4.1% 1.73 0.96 0.675 7m -150 2.3 1.26 0.915 6m -4500 -3500 2500 5m 313 1 774 1 28 4m 4.9 2.515 1.9 400 300 200 100 -100 8.3 5.1 3m 3.6 5 46F-0 (81.9/90.5)*% 2m 19.3 11 8.1 = 9.5% 81.9 ← 1 M 2.73E-0 1m 90.5 50 38 Comparison of illumination simulation software Light tools and actual measurement >The maximum deviation value is 9.5% Tools 1. Harrow onr The mean deviation value is 5%

2023台灣 Simcenter 用戶大會

2023 Taiwan Simcenter User Conference

掛載拋投之CFD模擬& 轂帽鰭設計分析技術建立

飛彈火箭研究所氣動力學組 國家中山科學研究院

掛載抛投之CFD模擬 CFD simulation of Store Separation from a 3D Delta Wing

林潔茵 2023/11/17

國家中山科學研究院 National Chung-Shan Institute of Science and Technology

- □一、介紹
- □二、彈道分析
- □ 三、暫態模擬 STRA-CCM+
- □四、結果

彈道分析 – 理論

□時間積分: 4th Runge-Kutta

- $\[\mathrm{tr}]_{B}$ + $\[\mathrm{tr}]_{B}$ + $\[\mathrm{tr}]_{B}$ + $\[\mathrm{tr}]_{W}$ + $\[\mathrm{tr}]_{W}$
- 角位移: $\vec{M} = \left[d\vec{H}/dt \right]_B + \vec{\omega} \times \vec{H}$
- □慣性座標系□ 彈體座標系 321系統
- 座標軸依z, y, x旋轉φ, θ, ψ

10/29/2023

彈道分析 – 係數

- □高度:0m
- 攻角: 0°
- 側滑角: 0°
- □ 高度: 0.25m
- 攻角: -6°~6°
- 側滑角: -6~0°
- □ 高度: 0.5*m*, 1*m*, 2*m*
- 攻角:-6~6°
- 側滑角:-12~0°

10/29/2023

結果

- 彈道分析和暫態模擬的結
 果都和實驗值很接近,驗
 證了擬穩態的方式確實可
 用來評估抛投情況。
- 為得到彈道分析的係數矩
 陣,共需計算182個穩態案
 例,其計算量極大,但之
 後要得到抛投軌跡則相對
 暫態模擬容易許多。

10/29/2023

Thank you for listening.

毂帽鰭設計分析技術建立 MASRD

No se

提報單位:國家中山科學研究院 飛彈火箭研究所 報告人:郭鑑輝 助理研究員 日期:112年11月17日

、設計緣由及原理概述(1/1)

鑒於X於空蝕水槽進行自推試驗時發現螺槳作動時會產生<mark>毂部渦空化</mark> (Hub Vortex Cavitation),使得載具航行時發出明顯噪音,為改善此一現 象,本組自行設計<mark>毂帽鰭(Propeller Boss Cap Fin, PBCF)</mark>以探討流場優化 效益。

毂部渦形成原因為軸對稱體近表面邊界層成長而使螺槳攻角增加,使得 毂部下游漩渦強度上升,當漩渦中心壓力低於流體飽和蒸汽壓即產生毂 部渦空化。

二、設計條件及參數評估(1/1)

設計條件

本毂帽鰭係裝置於及螺槳之後,其設計目標為確保X於最嚴苛推進條件下不 致產生較擴散型螺槳帽者更強之毂部渦。預定達成目標: (1)毂帽鰭下游之流場切向速度降低15%,壓力回升20%。

• 參數評估

經閱覽國內外多篇毂帽鰭相關研究論文,本組歸納出以下幾點設計原則: 1.毂帽鰭直徑應約為前方螺槳直徑之30%。

2. 毂帽鰭葉片數應與前方螺槳葉片數一致。

3. 毂帽鰭與前方螺槳之螺距角差異應不大於5度。

並設計一代號為PBCF0之毂帽鰭,其螺距角於各徑向處與螺槳之差異為0度, 此外探討螺槳與PBCF0毂帽鰭葉片中心線(軸中心至葉片根部弦長中點連線) 之安裝角度差異,考量二者均為5葉,各葉片角度差為360/5=72度,故先行分 析0、18、36、54度之相位差組合。

	PBCF0穀帽鰭 D=0.45m 5B P/D=1.253 EAR=0.5										
r/R	Tmax(mm)	Chord(mm)	P/D	T/C	F/C	C/D	T/D	Xs/D	TE t/D	Skew(degre	
0.5	15.750	113.85	0.750	0.138340	-0.020	0.253	0.0350	0	0.010	0	
0.6	14.085	125.10	1.014	0.112590	-0.018	0.278	0.0313	0	0.010	0	
0.7	12.825	135.90	1.253	0.094371	-0.016	0.302	0.0285	0	0.009	0	
0.8	11.880	146.70	1.465	0.080982	-0.014	0.326	0.0264	0	0.009	0	
0.9	11.250	157.95	1.654	0.071225	-0.012	0.351	0.0250	0	0.009	0	
1.0	10.800	169.65	1.817	0.063660	-0.010	0.377	0.0240	0	0.009	0	

三、數值模擬及後處理分析(一)(3/3)

• 後處理分析

於同一軸轉速下,螺槳搭配任一相位PBCF0毂帽鰭之綜合 推力皆較擴散型螺槳帽者為高,然綜合轉矩亦較高,未有 明顯優勢。

為探討各相位PBCF0毂帽鰭是否 能增進載具推進效益,於此以擴 散型螺槳帽為基準,作簡易效率 及1-t計算比較:

	PBCF0_0	PBCF0_18	PBCF0_36	PBCF0_54	度Cap	
η	1.2294	1.2245	1.2265	1.2217	1.2175	→效率差異不及1%
1-t	0.6435	0.6506	0.6506	0.6528	0.6693	

毂帽鰭1-t普遍偏低意謂其減速(retardation)作用較為明顯, 初步評估, PBCF0 18之特性較符合設計目標。 四、二階參數評估(1/1)

• 參數評估

於PBCF0_18毂帽鰭基礎下,此階段將探討變動毂帽鰭螺距對流場及推進效率 之影響,而螺距角變化範圍以不大於5度為原則,故繪製較PBCF0_18毂帽鰭 螺距大1、2、3、4、5度之PBCF1_18、PBCF2_18、PBCF3_18、PBCF4_18、 PBCF5_18及較PBCF0_18毂帽鰭螺距小1、2、3、4、5度之PBCF-1_18、 PBCF-2_18、PBCF-3_18、PBCF-4_18、PBCF-5_18共計十型毂帽鰭作為分析 標的,其螺距直徑比整理如下表:

	PBCF1_18	PBCF2_18	PBCF3_18	PBCF4_18	PBCF5_18		
r/R	P/D	P/D	P/D	P/D	P/D		
0.5	0.784	0.819	0.854	0.890	0.927		
0.6	1.057	1.101	1.146	1.191	1.238		
0.7	1.305	1.357	1.411	1.466	1.522		
0.8	1.525	1.586	1.648	1.711	1.776		
0.9	1.721	1.790	1.860	1.931	2.004		
1.0	1.891	1.967	2.044	2.123	2.204		
	PBCF-1_18	PBCF-2_18	PBCF-3_18	PBCF-4_18	PBCF-5_18		
r/R	P/D	P/D	P/D	P/D	P/D		
0.5	0.716	0.683	0.651	0.619	0.588		
0.6	0.971	0.930	0.890	0.850	0.810		
0.7	1.202	1.153	1.104	1.057	1.010		
0.8	1.406	1.349	1.293	1.238	1.184		
0.9	1.588	1.524	1.461	1.399	1.338		
1.0	1.744	1.673	1.603	1.535	1.467		

五、數值模擬及後處理分析(二)(1/2)

• 後處理分析

選擇於螺槳帽、轂帽鰭下游0.1D處(D=螺槳直徑)平面擷取各徑向流場切向速度or、角速度oo、壓力分布。

PBCF-5_18毂帽鰭之軸中心線附近切向速度最低, 於0.05r/R處僅為PBCF0_18毂帽鰭者之70.6%,且 為擴散型螺槳帽者之57.6%。

經換算,PBCF-5_18毂帽鰭之軸中心線附近角速度 最低,而螺距角高於PBCF0_18之毂帽鰭,均會於 軸中心線附近產生較PBCF0_18者高之角速度。

PBCF-5_18毂帽鰭於0.05r/R處之全壓最低,惟仍較 擴散型螺槳帽者高出約5.6倍。

五、數值模擬及後處理分析(二)(2/2)

• 後處理分析

相比PBCF0_18,各組合間船後螺槳推力、主機馬力數據 差異有限。為探討各相位PBCF0毂帽鰭是否能增進載具推 進效益,於此以擴散型螺槳帽為基準,作簡易效率及1-t 計算比較:

					-	
/	度Cap	PBCF 5_18	PBCF-4_18	PBCF-3_18	PBCF-2_18	PBCF-1_18
η	1.2175	1.2082	1.2260	1.2344	1.2150	1.2273
1-t	0.6693	0.6515	0.6480	0.6509	0.6538	0.6500
			(d Nella	- 6- 11		
	DDCE0 18	DDCE1 18	PRCE2 18	PRCE3 18	PRCE4 18	PRCE5 18

		PRCF0_18	PBCF1_18	PBCF2_18	PBCF3_18	PBCF4_18	PRCE2_18	
Γ	η	1.2245	1.2244	1.2093	1.2146	1.2313	1.2378	→效率差
	1 - t	0.6506	0.6505	0.6580	0.6522	0.6486	0.6464	里僅2.4%
								八庄一八。

	0.05r/R流場切向速度相比擴散型螺槳帽 (需低於85%)	0.05r/R壓力相比擴散型螺槳帽 (需高於120%)	た列翻帽	
PBCF-5_18	57.6%	559.7%	/_//开入旧	
PBCF-4_18	63.7%	580.2%	能出可滞	
PBCF-3_18	73.3%	584.2%		
PBCF-2_18	70.8%	609.9%	日 雲 求 1	
PBCF-1_18	77.8%	613.9%	人而不	
PBCF0_18	81.6%	635.6%		

六、檢討及未來建議(1/1)

- 檢討結語
- 經數值模擬驗證, 毂帽鰭確實可有效降低螺槳下游軸 中心線附近之切向速度,並能提高局部壓力,尤以後 者作用最為顯著。
- 因X推進系統軸向損失占比高, 毂帽鰭不易於旋向損 失中回收能量。

• 未來建議

- 本技術成果可應用於存在毂部渦空化風險之水面、水 下載具,為擴散型螺槳帽之另一選項。
- 2. 毂部渦空化之發生條件難以預測,且亦有尺度效應等
 問題,值得長期投入研究。

2023台灣 Simcenter 用戶大會

2023 Taiwan Simcenter User Conference

電動車集成式熱管理

戴嘉慧 科長 鴻華先進科技股份有限公司

電動車集成式熱管理-CFD

戴嘉慧 Carry Tai

https://www.foxtronev.com/tw/design https://www.efd.com.tw/simcenter-event.html

0技

私

- STAR CCM+應用於電動車熱管理 •
- EBUS Aerodynamic
 Cabin Comfort
 coolant loop design
- C SUV Aerodynamic Under hood Flow Cabin Comfort Window Defrost
- B CrossOver

<text><text><image><image><image>

2023台灣 Simcenter 用戶大會

2023 Taiwan Simcenter User Conference

Simcenter MicReD 解決方案的規劃及發展

許欽淳 博士 台灣西門子軟體工業股份有限公司

New Release for Simcenter Test (MicReD)

Alvin Hsu, Ph.D PreSales Consultant Alvin.hsu@siemens.com

Restricted | © Siemens 2023 | Siemens Digital Industries Software

SIEMENS

New high voltage booster - High voltage measurement capability

"Classic" High voltage boosters (150V and 280V) are not supported by T3STER SI

- Safety system is not suitable for industrial environments
- ✓ No high voltage diode (LED) measurement capability in T3Ster SI systems

New high voltage booster enables high voltage DUT testing with T3Ster SI systems, by also ensuring safe operation:

- ✓ Modular structure (PSU, OS, CG, DIV)
- ✓ Two versions
 - Simcenter Micred Power Booster 10A/150V, PN MG288359NO Simcenter Micred Power Booster 5A/300V, PN MG288361NO
- Proper safety features implemented
- ✓ T3STER SI control SW 2021.2 or higher is required

New high voltage booster - Package

Modular system

Page 3

- ✓ All modules (PSU, OS, CG, DIV) has 19" 1U form factor
- System delivered in 4U high mini rack for desktop application, can be assembled to standard 19" rack by customer
- Heating current source PSU (TDK) is included in the PN, no PSU needs to be ordered by customer from third party supplier
- System requires 2 mains sockets: 1x PSU and 1x others

Restricted | © Siemens 2023 | Siemens Digital Industries Software

New high voltage booster - HXM OS

Output stage module (heating current switching module)

- ✓ Up to 10A/150 or 5A/150V current switching capability
- ✓ Fast turn-off transient
- Accelerated turn-on transient by voltage precharging
 - Output capacitance of the switching mode power supply providing the heating current is precharged to a voltage level close to the DUT on state voltage
 - Also protects DUT from current peaks at turn-on
 - Works only with TDK Gensys series power supplies (included in PN)

Safe operation

- Output is galvanically isolated until
 - the source is activated by software
 - and all safety signals are received (HW and SW)

New high voltage booster - HXM CG

Measurement current generator module

- ✓ 100mA measurement current up to 100V (1uA resolution)
- ✓ 25mA measurement current up to 300V (4uA resolution)
- Output voltage limit programmable (5mV resolution)

Safe operation

Page 5

- Output is galvanically isolated until
 - the source is activated by software

Restricted | © Siemens 2023 | Siemens Digital Industries Software

• and all safety signals are received (HW and SW)

New high voltage booster - HXM DIV

Signal pre-scaler (divider) module

- ✓ 4 voltage inputs from DUT, 4 outputs towards T3STER SI MS401 measurement channel
- ✓ 3MΩ input impedance
- ✓ Two operation states:
 - 300V input voltage range

 32 division state enables voltage measurement for up to 300V, in combination with
 MS401 provides multiple differential measurement ranges from 32V to 300V (input voltage
 protection up to 400V)
 - Direct MS401 connection without rewiring

 division state directly couples input to output with relays.
 Below 80V this state allows direct connection to MS401 measurement channel to
 maximize resolution and accuracy

New high voltage booster - Safety system

- All outputs are galvanically isolated when no measurement is running
- EM OFF BTN: Emergency off button, immediately disables all high voltage sources and isolates outputs (mandatory)
- ✓ HV Enable BTN: High voltage enable button, after measurement with voltage above 50V is initiated from control software interface, the system prompts for HV enable (momentary) button to be pushed before high voltage state is activated (mandatory). This button prevents remote activation of high voltage state.
- HV Disable SW: High voltage disable switch, additional switch (or e.g. door open sensor) can be added in series with the high voltage enable signal to ensure no high voltage is activated in unsafe state (optional, not provided with system)

What's New in Simcenter Micred T3ster SI Control Software

1. New Option to Delay Switching

- The effect of slow heating turn off can be corrected by changing the timepoint of the heating current switching
- Switching voltage peaks can be moderated

2. HW Support

Page 7

Additional chillers supported

3. Merge Customer Specific Branches

✓ USB thermostat connection

4. Documentation Improvements

✓ Measurement example added to API documentation

5. Licensing update

✓ SALT 2.0 license is used from this release on

SIEMENS

What's New in Simcenter Micred T3ster SI Control Software

6. Repeat and Average Measurement

- ✓ A series of repeated measurements can be done automatically
- ✓ Average of the outcomes is calculated

7. New Option to Save to USB

✓ Measurement results can be saved to an external USB drive

8. User Interface Improvements

- Source switching delays are hidden as default
- Trigger panel has been updated
- ✓ Measurement plots can be saved in svg format
- ✓ Measurement plots can be extended to fullscreen

9. Bug Fixes

- ✓ The Auto Range function of the HXM Booster has been adjusted
- ✓ The limit of high voltage measurement mode of the HXM Booster has been set to 40 V

Page 9 Restricted | © Siemens 2023 | Siemens Digital Industries Software

New Switching Delay Option

Existing Delay Options in T3ster SI Control Software 2301 – 1st Level:

- Source Timing Control: Allows the user to control the order of activation and deactivation of the resources
- Delay: Allows the user to delay the start point of the measurement

New Delay Options in T3ster SI Control Software 2301 – 2nd Level:

- Source switching delay (falling/rising) for the trigger allows the user to moderate the effect of slow heating turn off (dashed black line)
 - Turn off process of the heating current is started earlier to start transient sampling where the actual power switching happens.
 - This delay is measured from the beginning of the heating/cooling sampling.
- Source switching delay for the gate voltage (of the 240 A Booster) helps to decrease the voltage transient peak in the circuit (continuous black line)
 - Turnoff of the gate drive voltage can be postponed
 - This delay is measured from the end of the heating process

SIEMENS

SIEMENS

New Option to Delay Switching

A set of new source switching delay features were integrated:

- Delay with discrete values for the <u>gate voltage source</u> of the 240A Booster:
 - 0, 16, 32, 64 us
- Falling/rising trigger delay in case of external device
- Falling/rising delay for <u>LP220 sources</u>
- These delays can be set by the resolution of us, in the range of:
 - Rising up to ±16 ms
 - Falling -16 ms to +5 ms

Page 11 Restricted | © Siemens 2023 | Siemens Digital Industries Software

PWB240	PWB10000 - S1Ch1 - Gate - Voltage source	Mode 0	in On-state vi	oltage 0 V		×
Settings						
🖰 Outpu	it mode	Off	On	Switching	Rds on	
🕒 On-state voltage [V]		Setpoint 0	Minimum -10	Maxi 20	mum	
C Source switching delay [µs]		0	16	32	64	
		Mode Switched	Rising Dates fuel	0	Faling Delay (us)	
Time	C Mode	High	Low Switch	Switched Inverted	Disabled	
Ingger 1	Source switching delay	(rising) [µs] 0	-16383	Maximum 16383		
	Source switching delay	(falling) 0	-16383	Maximum 5000		
LP220	S1Ch1 - Current source	Mode Switch	hing Cu	urrent 0.1 A	Voltage limit 4 V	×
Settings						
Output mode		Off	Swite	thing	On	
Current (A)		Setpoint 0.1	Minimum -1	Maxin 1	num	
Se Voltage limit [V]		Setpoint 4	Minimum -10	Maxii 10	าพา	
Source switching delay (rising) [µs] Setpoint		Setpoint 0	Minimum 0	Maxii O	mum	
Source switching delay (falling)		Setpoint O	Minimum O	Marii 0	משמ	

SIEMENS

Use Case 1 - Moderating the Transient Effect of Cable Inductance

- Having long cables in the measurement setup increase the inductance of the circuit
- When switching sources simultaneously, it leads to high transient voltage peak (red)
- Source switching delay allows the gate voltage turn off to be delayed, eliminating this transient (blue)

Use Case 2 – Compensating the Effect of Slow Heating Turn off

- By setting a negative delay for the trigger, the effect of instrumental delay can be controlled
- As seen on the graph, with a 60 us delay, the turn off process of the heating current started -60 us earlier (blue) compared to the no delay version (red)
- This way the transient sampling started where the actual power switching happened

Page 13 Restricted | © Siemens 2023 | Siemens Digital Industries Software

2. T3STER SI 2301 can be applied to all customized T3ster SI systems

Software compatibility with customized T3ster SI systems:

	Available for All Users	T3ster 2301 Applicable
Keenus Pelnus Chiller	Yes	Yes
Arroyo Chiller	Yes	Yes
Power Booster with one Power Supply Unit	No	Yes

Global thermostat settings		
Thermostat type	ARROYO Thermostat	~
	Select thermostat type	
Interface	JULABO HE	
	JULABO F	
Baudrate	JULABO CF	_
	MICRED Thermostat	
Data bite	ARROYO Thermostat	_
Data Dits	Espec	_
	Espec (No Addressing)	
Parity	Huber PB	_
	PELNUS (ADR1, BCC)	
Stop bits	1	~

3. T3ster SI 2301 supports USB port thermostat connection beside the RS232 option

Global thermostat settings C		
Thermostat type	ARROYO Thermostat	~
Interface	USBO	~
Baudrate	Select interface RS232 USB0	

API Documentation Improvement: Customizable Single Diode Transient Measurement Example Coded in Python

- The script helps to get started with API programming
- It describes a single diode thermal transient measurement
- > The code can also be customized by the user's specific needs
- Script sample can be downloaded from the T3ster SI 2301 UI
- IP address needs to be filled out
- > The thermal transient measurement results will be saved in the same folder

Measurement settings				Power Steps		▼
A Heating time [s]						
Setpoint	Minimum	Maximum 4000			dit Power Steps	
50	0	4000		Meas. ch.	Method	
🕒 Cooling tin	ne [s]					
Setpoint	Minimum	Maximum		S3Ch1	Diode	
30	0	4000				

YUSTO YUSTO SIGN SIGN USU					
TXSTIX PW010000 SIGN1 Image: SIGN1 SIGN1 Image: SIGN1 U220 NIGHT SIGN1 Image: SIGN1 U220 NIGHT SIGN1 Image: SIGN1		Idrive	Isense	↓ v,	neas
SIChi SIChi <td< th=""><th>T3STER PWE</th><th>810000</th><th></th><th></th><th></th></td<>	T3STER PWE	810000			
LP220 S1Ch1 - Current source Mode Switching Current 0.4 Voltage limit 0.V X MS401 S3Ch1 - Current source Mode On Current 0.A Range 10.V X	S1Ch1	SSCh1			
MS401 S3Ch1 - Current source Mode On Current 0 A Range 10 V X	LP220 \$10	Ch1 - Current source	Mode Switching	Current 0 A	Voltage limit 0 V X
	MS401 S3C	Ch1 - Current source	Mode On	Current 0 A	Range 10 V 🗙
MS401 S3Ch1 - Meas. ch. Sensitivity 2 mV/X Range 20 V (±10 V) X	MS401 S3C	Ch1 - Meas. ch. Se	nsitivity 2 mV/K	Range 20 V (±10 V)	×

nload result

ve all to "DATA_16GB" USB mass storag

nt Dars

sed (ZIP) d (ZIP)

SIEMENS

File name prefix

SIEMENS

Repeat and Average Measurement

- > To reduce the noise of the signal, repeat and average measurement was introduced:
 - The same measurement is repeated several times
 - · At the end an average transient function is calculated
- Intermediate measurements are stored
- > All repeated measurements and their average result can be downloaded
- > The number of repetition is limited by the size of the storage, length of the measurement, and the number of active channels
- Measurements are stored as a separate parx and zipped at the end

Restricted | © Siemens 2023 | Siemens Digital Industries Software Page 16

New Option to Save to USB Drive

- This feature supports the repeat and average measurement implementation allowing a greater amount of data to be handled
- New version allows the user to save measurement files to an external USB drive
- This way measurement outcomes can be transported easily to another device
- USB drive needs to be FAT32 formatted, max. capacity is 32 GB
- File writing/reading speed is limited according to USB high speed specification (USB2.0) even if USB3.X drive is used

Config list Settings Help			SIEMENS	Download results	×
Settings Thermostat Setup External Devices Available devices USB mass storage devices USB mass storage devices USB mass storage device USB mass storage device Figure 1 UUD Total face free space Select for save DATA_16GB BA16-CB19 1482 GB 1482 GB @ Figure USB		License	Other Options	File name prefix Save all to "DATA_16GB" USB mass storage	
Page 17 Restricted © Siemens 202	3 Siemens Digital Industries Software			SIEMEN	S

User Interface Improvements

- The new source switching delay feature of the previous release is hidden as default
 - It can be activated by the Source timing control "On" button
 - Reverse power off sequence and Wait for instrumental delay settings can be activated separately, after turning the Source timing control "On" (as before)
- Favicon has been modified according to the new iconset
- Trigger panel has been updated
 - HH: High, LL: Low, HL: Switched, LH: Switched Inverted, D: Disabled
- Measurement plots can be saved to svg format (beside png)
- Measurement plots can be put to fullscreen

	13 51	TER SI		×
en				
		Measurement set	tings	•
		🕒 Heating time [s]	
	TRIGGER	Setpoint 5 C	Minimum 0	Maximum 4000
	1 HL	Cooling time [s]	
gs	3 LH	Setpoint 5 C	Minimum 0 C	Maximum 4000
""	5 HH	🕒 Delay time [s]		
On		Setpoint 0	Minimum 0	Maximum 4000
		C Transient mod	e	
		Single cooli	ing Repe	ated cooling
		C Repeat		
		Setpoint 1	Minimum 1	Maximum 1
od		A Source timing	control	
eu		On	control	Off
			лан ••• .	1
			S, 197 - D S	Eulleman
	l			Fullscreen
	🔟 📴 🔍 🖯	6 B B 0	8.4 11.4	-= 01
Download plo	ot as svg			

Bug Fixes

- In the HXM Booster, the Auto Range function has been adjusted
- High voltage measurement mode limit in the HXM Booster has been set to 40V
 - Previous system limits have been unified
 - Measurements below 40V are considered low voltage, no extra validation is necessary before source activation
 - Measurements above 40 V are considered high voltage, and due to life protection risk, an additional confirmation is needed from the user to to activate the sources (pushing the physical button)

SIEMENS

Page 19 Restricted | © Siemens 2023 | Siemens Digital Industries Software

Questions?

SIEMENS

2023台灣 Simcenter 用戶大會

2023 Taiwan Simcenter User Conference

T3Ster量測案例分享

曾嘉玲 主任工程師 易富迪科技股份有限公司

Measurement Detail_ I_M

約 DUT put on Cold plate(水冷板)and measurement

So Measurement Parameter as bellow:

Set Parameter	GaN
V_{gs}	5V
I _M	TBD
$I_{\rm H}$	2 A
Ambient Temp.	25 °C

*Remark: I_M is measurement current and I_H is heating current.

Measurement Detail_ Rthjc DUT put on Cold plate(水冷板)and measurement

>>> Measurement Parameter as bellow:

Set Parameter	GaN
V_{gs}	5V
I _M	500mA
I _H	3A
Ambient Temp.	25 °C

 \Re Remark: I_M is sensing current and I_H is heating current.

THANK YOU

Contact Us

 易富迪科技股份有限公司
 ◇ 地點:新北市板橋區文化路三段285號19樓 (捷運江子翠站 2 號出口)
 ○ 東託 20 0770 4404 #4004(毒腔室)

◇ 電話:02-8772-4131 #1001(實驗室)

◇網址:<u>www.efd.com.tw</u>

大塚資訊集團 🧭 tsuka 🗊 🛛 📚 EFD 易富迪

原廠認證 獨立熱特性量測實

提供給客戶的解決方案

實驗室提供客戶全面的硬體服務,包括T3Ster Demo、教育訓練、熱特性Benchmark測試、半導體元件代測 以及暫態熱阻、PowerCycling壽命測試等。同時,我們也協助客戶校正熱模擬模型,提供MicRed硬體系統銷 售服務,並提供客製化設備設計和建置。我們致力於為客戶提供全面的支援和解決方案。

實驗室設備

- ✓ T3Ster及T3Ster SI
- Booster + Power Supply (150V / 10A & 11V / 240A)
- ✓ Thermostat 電子晶片恆溫控制器 (0~100度)
- ✓ 大型控溫冷板 + Julabo 冰水機 (可解 400~500 W)
- ✔ 符合 JEDEC 標準的 Still Air Chamber

- ▲ Power Tester 功率循環測試
- ▲ T3Ster System 暫態熱阻量測系統

可量測之元件

SIEMENS 好的真与测试解决方案工程创制 集上大会论文集征集

 (\mathbf{e})

- ✓ LED \ Logic IC \ Diode
- ✓ MOSFET (discrete or module)

IEMENS仿真測

論文競賽

- ✓ IGBT (discrete or module)
- ✓ 能通電並有電壓差變化的元件皆能量測

▲ 可測量零散元件及模組

量測可得到之結果

- ✓ 元件的 Rthjc、Rthjb、Rthja 熱阻值
- 一元件的 ΔTj (junction to ambient) 温度變化
- Zth (Thermal Impedance)

- v Pulse Thermal Impedance
- ✓ SOA (Safety Operation Area)
- ✓ Structure Function 結構函數

2023 Taiwan Simcenter **User Conference**

大塚資訊集團

Otsuka IT大塚資訊科技股份有限公司

- 台北總公司 TEL: 02-8964-6668 TEL: 03-550-5568 TEL: 04-2258-2355 TEL: 06-215-3356 TEL: 07-550-1398
- 新竹分公司 ■ 台中分公司 ■ 台南分公司 ■ 高雄分公司

- 歐艾堤希(上海) 歐艾堤希(昆山) 大冢軟件(東莞)

 - TEL: 086-021-6299-9359 TEL: 86-512-5035-9889 TEL: 86-769-8188-8721
- 総 ミテレ 易富迪

易富迪科技股份有限公司 | 熱特性量測實驗室 TEL: 02-8772-4131